I list each task here and what is necessary to run them in HTCondor. I am assuming this will be running without a shared filesystem and also without access to NRAO filesystems. So any call to /lustre/aoc or /users/<username> or other such things need to be altered to be site agnostic.
Every DAG or task creates .log, .out and maybe .png files that we want to keep. Also, .last files like tclean.last are often created. These are not necessary but can be usefull for debugging things. I assume that almost all tasks require the Measurement Set (MS). I question what tasks actually modify the MS. run_tclean() defaults to using the corrected datacolumn. Does that mean it is changing this column?
This document it not complete. I am sure I am missing inputs and perhaps outputs as well.
In this document, "data" when referenced as an input or an output is a directory containing the Measurement Set (E.g. VLASS1.2.sb36491855.eb36574404.58585.53016267361_split.ms/)
How do we handle the want to start a job at a given task? For example, say a job ran to completion but you want to re-run the job after altering something in task17. It would be unfortunate to have to run tasks 1 through 16. It would be better to start and task17 and run through to the end of task25. To do this requires saving the output of each task. But how? Incremental or Differential? Using prolog and epilog scripts? Other?
Task01
Didn't alter the MS
run_tclean( 'iter0', cfcache=cfcache_nowb, robust=-2.0, uvtaper='3arcsec', calcres=False )
- input: data
- Input: cfcache_nowb='/mnt/scratch/cfcache/cfcache_spw2-17_imsize16384_cell0.6arcsec_w32_conjT_psf_wbawp_False.cf'
- output: working/VIP_iter0.*
Task02
This tasks creates VIP_iter0b.* but I don't see those files ever referenced in this script again. What does this taks do that is necessary to other tasks?
Didn't alter the MS
run_tclean( 'iter0b', cfcache=cfcache_nowb, calcres=False )
- input: data
- input: cfcache_nowb='/mnt/scratch/cfcache/cfcache_spw2-17_imsize16384_cell0.6arcsec_w32_conjT_psf_wbawp_False.cf'
- output: working/VIP_iter0b.*
Task03
mask_from_catalog(inext=inext,outext="QLcatmask.mask",catalog_search_size=1.5,catalog_fits_file='../VLASS1Q.fits')
- input: data
- input: VLASS1Q.fits
- output: mask_from_cat.crtf, VIP_QLcatmask.mask
Task04
run_tclean( 'iter1', robust=-2.0, uvtaper="3arcsec" )
- input: data
- output: VIP_iter1.*
Task05
replace_psf('iter1','iter0')
This is just some python that deletes VIP_iter1.psf.* and copies VIP_iter0.psf.* to VIP_iter1.psf.*. It is inefficient to ever make this task be its own DAG. I suggest it always be in the same DAG as Task04.
- input: VIP_iter0.psf.*, VIP_iter1.psf.*
- output: VIP_iter1.psf.*
Task06
run_tclean( 'iter1', robust=-2.0, uvtaper="3arcsec", niter=20000, nsigma=5.0, mask="QLcatmask.mask", calcres=False, calcpsf=False )
- input: data
- input: VIP_iter1.*, VIP_QLcatmask.mask
- output: VIP_iter1.*
Task07
run_tclean( 'iter1', calcres=False, calcpsf=False, savemodel='modelcolumn', parallel=False )
- input: data
- input: VIP_iter1.*
- output: VIP_iter1.*
- output: data
Task08
flagdata(vis=vis, mode='rflag', datacolumn='residual_data',timedev='tdev.txt',freqdev='fdev.txt',action='calculate')
replace_rflag_levels()
flagdata(vis=vis, mode='rflag', datacolumn='residual_data',timedev='tdev.txt',freqdev='fdev.txt',action='apply',extendflags=False)
flagdata(vis=vis, mode='extend', extendpols=True, growaround=True)
- input: data
- output: tdev.txt,. fdev.txt
Task09
statwt(vis=vis,combine='field,scan,state,corr',chanbin=1,timebin='1yr', datacolumn='residual_data' )
- input: data
- output: data
Task10
gaincal(vis=vis,caltable='g.0',gaintype='T',calmode='p',refant='0',combine='field,spw',minsnr=5)
- input: data
- output: data
Task11
applycal(vis=vis,calwt=False,applymode='calonly',gaintable='g.0',spwmap=18*[2], interp='nearest')
- input: data
- output: data
Task12
run_tclean( 'iter0c', datacolumn='corrected', cfcache=cfcache_nowb, robust=-2.0, uvtaper='3arcsec', calcres=False )
- input: data
- output: VIP_iter0c.*
Task13
run_tclean( 'iter0d', datacolumn='corrected', cfcache=cfcache_nowb, calcres=False )
- input: data
- output: VIP_iter0d.*
Task14
run_tclean( 'iter1b', datacolumn='corrected', robust=-2.0, uvtaper="3arcsec" )
- input: data
- output: VIP_iter1b.*
Task15
replace_psf('iter1b','iter0c')
This is just some python that deletes VIP_iter1b.psf.* and copies VIP_iter0c.psf.* to VIP_iter1b.psf.*. It is inefficient to ever make this task be its own DAG. I suggest it always be in the same DAG as Task14.
- input: VIP_iter1b.psf.*, VIP_iter0c.psf.*
- output: VIP_iter1b.psf.*
Task16
run_tclean( 'iter1b', datacolumn='corrected', robust=-2.0, uvtaper="3arcsec", niter=20000, nsigma=5.0, mask="QLcatmask.mask", calcres=False, calcpsf=False )
- input: data
- input: iter1b, VIP_QLcatmask.mask
- output: inter1b
Task17
imsmooth(imagename=imagename_base+"iter1b.image.tt0", major='5arcsec', minor='5arcsec', pa='0deg', outfile=imagename_base+"iter1b.image.smooth5.tt0")
- input: data
- input: iter1b.image.tt0
- output: iter1b.image.smooth5.tt0
Task18
exportfits(imagename=imagename_base+"iter1b.image.smooth5.tt0", fitsimage=imagename_base+"iter1b.image.smooth5.fits")
- input: data
- input: iter1b.image.smooth5.tt0
- output: iter1b.image.smooth5.fits
Task19
subprocess.call(['/users/jmarvil/scripts/run_bdsf.py', imagename_base+'iter1b.image.smooth5.fits'],env={'PYTHONPATH':''})
This needs some modification. It calls a script from Josh's homedir and runs bdsf out of /lustre.
Task20
edit_pybdsf_islands(catalog_fits_file=imagename_base+'iter1b.image.smooth5.cat.fits')
mask_from_catalog(inext=inext,outext="secondmask.mask",catalog_fits_file=imagename_base+'iter1b.image.smooth5.cat.edited.fits', catalog_search_size=1.5)
- input: iter1b.image.smooth5.cat.fits
- input: iter1b.image.smooth5.cat.edited.fits
- output: secondmask.mask
Task21
immath(imagename=[imagename_base+'secondmask.mask',imagename_base+'QLcatmask.mask'],expr='IM0+IM1',outfile=imagename_base+'sum_of_masks.mask')
im.mask(image=imagename_base+'sum_of_masks.mask',mask=imagename_base+'combined.mask',threshold=0.5)
- input: secondmask.mask, QLcatmask.mask
- output: sum_of_masks.mask
- input: sum_of_masks.mask
- output: combined.mask
Task22
run_tclean( 'iter2', datacolumn='corrected' )
- input: data
- output: VIP_iter2.*
Task23
replace_psf('iter2', 'iter0d')
This is just some python that deletes VIP_iter2.psf.* and copies VIP_iter0d.psf.* to VIP_iter2.psf.*. It is inefficient to ever make this task be its own DAG. I suggest it always be in the same DAG as Task22.
- input: VIP_iter2.psf.*, VIP_iter0d.psf.*
- output: VIP_iter2.psf.*
Task24
run_tclean( 'iter2', datacolumn='corrected', scales=[0,5,12], nsigma=3.0, niter=20000, cycleniter=3000, mask="QLcatmask.mask", calcres=False, calcpsf=False )
- input: data
- input: VIP_iter2.*, QLcatmask.mask
- VIP_iter2.*
Task25
os.system('rm -rf *.workdirectory')
os.mkdir('iter2_intermediate_results')
os.system('cp -r *iter2* iter2_intermediate_results')
shutil.rmtree(imagename_base+'iter2.mask')
shutil.copytree(imagename_base+'combined.mask',imagename_base+'iter2.mask')
run_tclean( 'iter2', datacolumn='corrected', scales=[0,5,12], nsigma=3.0, niter=20000, cycleniter=3000, mask="", calcres=False, calcpsf=False )
This does some file cleaning and then runs run_tclean. Where do we want to do that file cleaning? In the previous task? On the submit host?
- input: data
- input: VIP_iter2.*
- output: VIP_iter2.*