

Title: Telescope Time Allocation

Tools Conceptual Architecture
Author: Whitehead Date: 3/19/2020

NRAO Doc. #: N/A Version: 0.2

Telescope Time Allocation Tools

Conceptual Architecture

PREPARED BY ORGANIZATION DATE

Mark Whitehead NRAO 3/19/2020

Change Record

VERSION DATE REASON

0.1 3/13/2020 Released initial draft.

0.2 3/19/2020 Incorporated internal pre-CoDR feedback.

Page 1 of 46

TABLE OF CONTENTS

1 Architecture Background ... 3
1.1 Problem Background ... 3

1.1.1 System Overview .. 3
1.1.2 Context .. 3
1.1.3 Driving Requirements ... 5

1.2 Solution Background.. 7
1.2.1 General Architecture Principles .. 7
1.2.2 Architecture Refinements ... 9
1.2.3 Anti-Corruption Layer .. 11

2 Views ... 13
2.1.1 System Context ... 14
2.1.2 Domain Layer ... 15
2.1.3 Application Layer ... 41

3 Referenced Materials .. 45

Page 2 of 46

“The software architecture of a system is the set of structures needed to reason about the system,

which comprise software elements, relations among them, and properties of both.”

- “Software Architecture in Practice”, Bass et al.

Page 3 of 46

1 ARCHITECTURE BACKGROUND

1.1 Problem Background

The sub-parts of this section explain the constraints that exert significant influence over the

architecture.

1.1.1 System Overview

[This section describes the general function and purpose for the system or subsystem
whose architecture is described in this document.]

The conceptual architecture described in this document will be used to develop a new set of

telescope time allocation (TTA) tools for a variety of NRAO proposing facilities and review

processes.

The conceptual architecture describes the minimum number of concepts and their relationships

needed to execute TTA processes, including: proposal solicitation specification, proposal

preparation and submission, proposal review, time allocation, allocation approval, and time

award. The architecture creates a contextual boundary around the core TTA concepts while

providing an isolating layer to support the flow of proposal and award information into existing

scheduling and observing systems. In addition, the solicitation, proposal, allocation, and award

concept structures are intended to support the capture of information required to support science-

ready data products.

The overall architectural style for this system relies on three patterns: Domain Model, Layers,

and Domain Object. Domain Model creates and enforces a contextual boundary around core

TTA concepts to support system sustainability over a decade or longer. Layers and Domain

Object enforce separation of concerns between and within levels of abstraction, respectively, to

support maintainability. The overall architectural style is refined via a contemporary version of

Layers, called Hexagonal Architecture, which strictly isolates the Domain Model from

technology used to implement other system features related to user interfaces, messaging, and

persistence.

The system requirements stress flexibility and consequently the architecture includes structures

that permit updates without code changes and accommodate future facilities, new types of

proposals, and different kinds of proposal review processes.

1.1.2 Context

[This section describes the goals and major contextual factors for the software
architecture. The section includes a description of the role software architecture plays in
the life cycle, the relationship to system engineering results and artifacts, and any other
relevant factors.]

The TTA system conceptual architecture adheres to DMS Architecture Standards1. These

standards are compatible with the “Vee Model” for systems engineering and utilize conceptual,

1 DMS Architecture Standards

https://open-confluence.nrao.edu/display/Arch/DMS+Architecture+Standards+and+Conventions

Page 4 of 46

logical, and physical architecture phases to maintain tight coupling between what the

stakeholders want and what the developers build throughout the development process. This

document only describes the conceptual architecture.

Figure 1 illustrates planned iterative phases as the design evolves from conceptual models to

deployed code and emphasizes how architecture development is paired with other activities as

development progresses.

Figure 1 Planned iterative phases emphasizing how architecture development is paired with prototyping and coding as
development progresses. Graphic by Reid Givens.

1.1.2.1 Conceptual Phase

This phase pairs requirements analysis and development with conceptual design; the goal is to

analyze the requirements to produce an abstract model which highlights relationships and

multiplicities between key concepts with no implementation details. The resulting conceptual

architecture is a language that enables precise communication between stakeholders and

developers and forms the basis of subsequent development and maintenance.

After all the requirements have been analyzed, the architect and stakeholder(s) “walk through”

use cases to validate the conceptual architecture relative to the requirements. This paper exercise

verifies there are no extraneous concepts and that the conceptual architecture contains structures

that can be associated with all L0 and L1 requirements.

After the architect and stakeholder(s) agree the conceptual architecture is complete, there is an

opportunity for a Conceptual Design Review and an initial round of planning and resource

allocation.

Page 5 of 46

1.1.2.2 Logical Phase

In this phase prototyping iterations are used to validate the conceptual architecture, capture

dynamic behavior, and produce a simple end-to-end system (i.e. walking skeleton). The

prototyping process exposes the parts of the conceptual design that need greater detail and the

conceptual design is refined into a logical design. This phase does not identify particular

technology choices unless it is advantageous to do so.

Also, this phase includes the development of unit tests for the prototype code and requires

validation led by the stakeholder(s). Static code analysis is introduced in this phase to establish

and maintain baseline code quality standards.

Once the architect, developer(s), and stakeholder(s) are satisfied with the walking skeleton, there

is an opportunity for a Logical Design Review and another round of planning and resource

allocation.

Phases 1-3 in the Telescope Time Allocation Tools Execution Plan define specific objectives for

the Logical Phase2.

1.1.2.3 Physical Phase

In this phase, development iterations elaborate the walking skeleton to incrementally include

additional features. For each iteration, the logical architecture is refined into the physical

architecture by including entities that point to real life software, servers, systems, etc. Software

verification will be accomplished through automated system testing as part of continuous

integration and deployment.

1.1.3 Driving Requirements

[This section lists the functional requirements, quality attributes, and design constraints. It may

point to a separate requirements document.]

The conceptual architecture is largely derived from the TTA system concept3 and TTA system

description4. Presentations describing the overall concept from a user’s perspective and the

project kickoff also influenced the architecture. Analysis of this information resulted in the

following quality attributes and constraints.

2 “Telescope Time Allocation Tools Execution Plan”, Treacy, Kern, 688-TTAT-010-MGMT, Version 0.01
3 "Telescope Time Allocation (TTA): Concept", Balser et al., 688-TTAT-002-MGMT, Jul. 02, 2019
4 "Telescope Time Allocation (TTA): System Description", Balser et al., 688-TTAT-004-MGMT, Mar. 13, 2020

Page 6 of 46

1.1.3.1 Quality Attributes

1.1.3.1.1 Sustainability

NRAO wants to utilize this system for a decade or more. Therefore, the system must be based on

architectural features that permit cost effective change to requirements, environments, and

configurations.

1.1.3.1.2 Maintainability

The architecture must support variations in feature sets, organizational processes, and

algorithmic behavior. The design must especially include architectural features that “Isolate the

user interface from other parts of the system as requirements for this area are likely to have the

most ‘churn’”5.

1.1.3.1.3 Performance

The majority of the processing for this system involves responding to client requests. For this

type of processing, the architecture must support specific system performance requirements:

The System have the following performance metrics which occur at peak times

during the day of the proposal deadline. Here we quote values for the PST during

the 20A semesters.

(a) Server load shall be less than 3 - 4. The stress zone is a load near 7 - 8.

(b) Server shall be able to handle 140 simultaneous users.

(c) Server shall be able to handle 60 proposals submitted within a two-hour period.

(d) Server shall be able to handle 10,000 pages served over a two-hour period.

Additional processing requirements involve exchanging data with other systems. It should take

between 1-600s to transfer TTA information to any facility-specific system.

1.1.3.1.4 Configurability

There are numerous references throughout the System Description related to configuring the

system without editing code. Appropriate design features must be chosen to support these

requirements.

1.1.3.1.5 Usability

The system will primarily interact with different types of human users. System requirements

for the User Interface will be developed in a subsequent architectural phase. Consequently, the

conceptual architecture does not directly address the details of usability.

5 “2019-06-Project KickOff”, Kern

Page 7 of 46

1.1.3.2 Constraints

Table 1 indicates key constraints for the design. Note that it is not required that all constraints be

addressed in the conceptual architecture phase and that constraints 2-4 express desires that are

not hard requirements.

ID Constraint

CON-1 The TTA system will be a web-based tool. (TTA-L0-1.2)

CON-2 To the extent that it is efficient to do so, the implementation is expected to draw

from the ALMA tools as well. (TTA-L0-1.1)

CON-3 The user interface will follow the design and functionality of the ALMA OT. (TTA-

L0-1.3)

CON-4 If possible, proposal submission via the TTA system should be similar for any

NRAO instruments. (TTA-L0-1.4)

Table 1 TTA Constraints

1.2 Solution Background

[The sub-parts of this section provide a description of why the architecture is the way that it is,

and a convincing argument that the architecture is the right one to satisfy the behavioral and

quality attribute goals levied upon it.]

CON-1 suggests a layered architecture. The desire for maintainability suggests use of the Layers

and Domain Object patterns to enforce separation of concerns between and within, respectively,

layers of abstraction. Due to NRAO's need to sustain TTA Tools for a decade or more, we

further refine Layers by selecting a Hexagonal Architecture style to establish a core Domain

Model that is strictly isolated from the rest of the application and from technology choices

needed to meet overall system requirements.

1.2.1 General Architecture Principles

[This section provides a rationale for the major design decisions embodied by the software

architecture. It describes any design approaches applied to the software architecture, including

the use of architectural styles or design patterns, when the scope of those approaches transcends

any single architectural view. The section also provides a rationale for the selection of those

approaches. It also describes any significant alternatives that were seriously considered and why

they were ultimately rejected. The section describes any relevant COTS issues, including any

associated trade studies.]

1.2.1.1 Domain Model

According to Buschmann et al.6, the Domain Model pattern:

6 “Pattern-Oriented Software Architecture: A Pattern Language for Distributed Computing”, Vol 4, Buschmann et

al., 2010

Page 8 of 46

“...defines a precise model for the structure and workflow of an application domain - including

their variations. Model elements are abstractions meaningful in their domain; their roles and

interactions reflect domain workflow and map to system requirements.”

In consonance with sustainability and given the natural turnover of staff, it is vital to leverage

architectural features that permit all stakeholders to use a precise language throughout the life of

the system. A precise language facilitates reasoning about the system and cost effectively

accommodating new requirements. The TTA Domain Model creates a contextual boundary

around a highly unified software core representing key TTA concepts.

Domain-Driven Design7 (DDD) was used to create the TTA Domain Model. DDD defines a

minimum set of design primitives that can be readily modeled in standard UML and SysML.

These primitives will be refined in the logical and physical architecture phases.

The design primitives are defined as follows8:

 Entity - Something with identity and continuity, tracked through different states, time,

life cycle, etc.

 Value Object - An attribute that describes the state of something else; can be an

assemblage of other objects or reference entities.

 Aggregate - A cluster of associated objects treated as a unit for the purpose of data

changes. Aggregates have a root and a boundary. The boundary defines what is inside the

aggregate. The root is a single, specific entity contained in the aggregate. The root is the

only member of the aggregate that outside objects are allocated to hold references to,

although objects within the boundary may hold references to each other.

 Repository - Represents all objects of a certain type as a conceptual set; a collection with

more elaborate querying capability.

 Factory - Creates and reconstitutes complex objects and aggregates, keeping their internal

structure encapsulated.

 Service - An aspect of the domain expressed as action, activity, or operation rather than

object; something done for a client on request. A Service has no state of its own nor any

meaning in the domain beyond the operation it hosts. A Service should have a defined

responsibility and that responsibility and the interface fulfilling it should be defined as

part of the Domain Model (i.e. parameters and results should be Domain Model domain

objects and operation names should come from the language defined in the Domain

Model).

7 “Domain-Driven Design: Tackling Complexity in the Heart of Software”, Evans, Eric, 2003
8 Ibid.

Page 9 of 46

1.2.1.2 Layers

According to Buschmann et al.9, the Layers pattern:

“...helps to structure applications that can be decomposed into groups of subtasks in which each

group of subtasks is at a particular level of abstraction, granularity, hardware-distance, or other

partitioning criteria.”

By enforcing separation of concerns between levels of abstraction, the Layers pattern supports

maintainability.

1.2.1.3 Domain Object

Buschmann et al.10 define Domain Object as a pattern that:

“...separates different functional responsibilities within an application such that each

 functionality is well encapsulated and can evolve independently”.

Relative to the Layers pattern, the conceptual architecture uses the Domain Object pattern to

enforce separation of concerns within levels of abstraction and therefore also supports

maintainability.

1.2.2 Architecture Refinements

1.2.2.1 Hexagonal Architecture

Cockburn, Fowler, Freeman et al. document a contemporary interpretation of the Layers pattern

called Hexagonal Architecture, originally known as “Ports and Adapters”. This interpretation

results in an architecture in which…

“...the code for the business domain is isolated from its dependencies on technical infrastructure,

such as databases and user interfaces. We don’t want technical concepts to leak into the

application model, so we write interfaces to describe its relationships with the outside world in

its terminology (Cockburn’s ports). Then we write bridges between the application core and

each technical domain (Cockburn’s adapters).”11

9 “Pattern-Oriented Software Architecture: A Pattern Language for Distributed Computing”, Vol 4, Buschmann et

al., 2010

10 “Pattern-Oriented Software Architecture: A Pattern Language for Distributed Computing”, Vol 4, Buschmann et

al., 2010
11 “Growing Object-Oriented Software, Guided by Tests”, Freeman et al, 2009

Page 10 of 46

Figure 2 provides a high-level graphic representation of hexagonal architecture.

Figure 2 TTA Hexagonal Architecture emphasizing layers isolating the core domain from technology choices associated with
user interfaces, messaging, persistence, and other systems. Graphic by Reid Givens.

The ports and adapters feature of this architecture will be further refined in subsequent phases

using the Dependency Inversion Principle in the usual way12. Figure 3 shows how interaction

between various technologies and the Application Layer can be implemented via abstract

interfaces.

Figure 3 A detailed view of the interaction between the Framework Layer and Application Layer via interfaces. Graphic by
Reid Givens.

The TTA conceptual architecture utilizes hexagonal architecture to address usability,

maintainability, and configurability quality attributes. This design decision refines the general

Layers pattern into the following specific TTA layer definitions.

12 See SOLID Design Principles for details.

https://en.wikipedia.org/wiki/SOLID

Page 11 of 46

1.2.2.2 Domain Layer

The Domain Layer contains entities (Domain Objects) comprising a Domain Model derived from

the TTA domain and expressed as Domain-Driven Design primitives. The Domain Objects

represent ‘business logic’ - the rules the application must follow - and define how the

Application Layer can interact with them.

Additionally, the Domain Layer can contain supporting domain logic such as Domain Events

(events fired at important points in the business logic) and use-cases (definitions of what actions

can be taken on the application).

1.2.2.3 Application Layer

Entities in the Application Layer orchestrate the use of entities found in the Domain Layer. The

Application Layer also adapts requests from the Framework Layer to the Domain Layer.

1.2.2.4 Framework Layer

The Framework Layer includes entities that are not part of the Domain Model but are needed to

satisfy system requirements. Specific Framework Layer entity examples include UX,

persistence, messaging, job processing, or other systems.
1.2.3 Anti-Corruption Layer

Figure 2 includes the concept for systems interacting with one another via framework layers.

Inter-system data transfer must be addressed because the TTA system must “…support the

creation of observing projects for each allocation request with positive disposition in a format

appropriate for each facility.”13

Over the course of many years, different radio astronomy facilities have developed their own

unique conceptual models for creating and executing projects. There are six patterns covering a

range of strategies for relating different conceptual models14. The TTA system will use the Anti-

corruption Layer (ACL) strategy to create an isolating layer to provide other systems with

information or functionality in terms of their own domain model (see Figure 4). This strategy

allows TTA to maintain a highly unified core conceptual model while supporting any facility

which may have different development teams, budgets, requirements, etc. ACL will be

instantiated in the TTA Framework layer and will consist of some combination of services,

translators, adaptors, or facades. Additional design choices will be made in the Logical and

Physical phases.

13 “2019-03-TTA Tools Concept”, Kern et al.
14 See this analysis for details.

https://docs.google.com/document/d/1drOMTrJEuYn8aCrkORuS1UfW4wHOVnS0uk-omP4FpSY/edit?usp=sharing

Page 12 of 46

Figure 4 Depiction of the ACL strategy used to provide VLA and GBO with project information in terms of their down domain
models. Graphic by Reid Givens.

Page 13 of 46

2 VIEWS

The TTA system conceptual architecture was modeled in Cameo System Modeler. Figure 5

shows the model package structure. This section provides views of the System Context, Domain

Layer, and Application Layer packages. It is expected that the Application and Framework layers

will be refined substantially in the logical and physical architecture phases.

Domain Layer package views consist of a primary presentation, an element catalog, use cases,

and requirements mapping. The primary presentation is a SysML Block Definition Diagram

(BDD) and the element catalog defines each of the blocks in the BDD. The uses cases are

standard UML/SysML. The requirements mappings are dependency structure matrices showing

how the blocks in each view map to requirements.

Application Layer package views consist of only a primary presentation.

Figure 5 TTA system Cameo package structure

Page 14 of 46

2.1.1 System Context

The System Context defines the users and other external entities that interact with the system.

This view is used to define the environment that needs to be considered, define the system

boundary, and identify required interfaces.

Figure 6 TTA System Context

Table 2 provides short definitions for each of the actors shown in Figure 6. Based on

requirements analysis, it is known that TTA Tools requires entities that generate scores,

dispositions, and metrics. However, it is not yet clear where and how they fit into the

architecture. Therefore, the entities are modeled as external systems and will be refined in

subsequent phases. Design decisions about the Notification System have also been delayed in

order to take advantage of a similar system that is currently being developed for a different SSA

project.

Page 15 of 46

Name Description

Metrics Analyst Compiles usage statistics for reporting

TTA Group Member Supports and executes proposal and time allocation process

Telescope User PI or Co-I, creates proposals

SRP Member Provides scientific reviews of proposals

SRP Chair Lead generation of consensus scores

TAC Chair Recommends Time Allocation

Observatory Director Approves allocation awards

Observatory Director Delegate Approves allocation awards

External TAC Provide external projects that have been allocated time

NRAO Account System Provides authorization and authentication

Instrument Scheduling Responsible for scheduling observations

Helpdesk Provides telescope user issue management

Product Archive Persistence layer products and supports data delivery

Workspaces Provides job processing

Notification System Manages sending notifications to different group members

Score Generator Placeholder, will be refined in subsequent phase

Disposition Generator Placeholder, will be refined in subsequent phase

Metrics Generator Placeholder, will be refined in subsequent phase

Project Creation Supports creation of observing projects for each allocation

request with positive disposition in a format appropriate for

each facility
Table 2 System Context Actor Information

2.1.2 Domain Layer

The Domain Layer Model consists of a set of packages which map to sections 3.1 to 3.9 in “TTA

Tools System Description”. Each package contains models of the core concepts associated with

each section. The following package views show the concepts along with their associations and

multiplicities. A summary view showing the dependencies between packages is also provided.

In the following views, entity, value object, and aggregate design primitives are expressed as

SysML stereotypes while repository, factory, and service primitives are expressed as block

names.

2.1.2.1 Solicit

Telescope users submit proposals to access AUI NA telescopes in the context of solicitations.

Solicitations define the resources available to proposers and the time period over which approved

proposals execute. The Solicit package contains all of the concepts associated with solicitations.

Support for multiple concurrent solicitations is a key feature of this conceptual architecture.

Page 16 of 46

2.1.2.1.1 Primary Presentation

2.1.2.1.2 Element Catalog

Domain

Object

Definition

Facility One or more antennas that coordinate to perform observations. For example,

the VLA consists of 27 antennas but is typically one Facility. The HSA may

consist of all 10 VLBA antennas and all 27 VLA antennas but is considered

as one Facility since the signals from all telescopes are correlated together. A

Facility may also be a computing cluster to reprocess data.

Proposal

Process

How a proposal is processed through the system.

Proposal Class A designation providing a set of different validation rules within a

Solicitation. For example, Regular versus Large proposals.

Specification

Constraint

Restrictions on available resources within a Capability for a Solicitation.

Capability The different ways a Facility may be operated and the resources available.

Page 17 of 46

Solicitation An announcement from the observatory to the community to submit a request

to use observatory resources. Each solicitation is composed of Capabilities

and a Proposal Process.

Science

Category

The astronomical sub-field of science related to a Proposal.

2.1.2.1.3 Use Cases

Page 18 of 46

2.1.2.1.4 Requirements Mapping

Page 19 of 46

2.1.2.2 Propose

Telescope users create proposals describing how and why they want to use facility resources.

The Propose package contains all the concepts associated with proposals. The Request

Specification concept provides a flex point in the design to support requests for resources other

than observing time. For example, as data processing becomes a more important factor in the

evaluation process, the Request Specification concept can be extended to accommodate requests

for computing resources, bandwidth, storage, etc.

2.1.2.2.1 Primary Presentation

2.1.2.2.2 Element Catalog

Domain Object Definition

Author The person who creates a proposal.

Page 20 of 46

Proposal A request to use observatory resources that includes a scientific and

technical justification.

Proposal

Information

The part of a Proposal that includes identifying information and the

scientific justification. This information is independent of the resources

being requested.

Allocation

Request

The part of a Proposal that specifies the details of the requested observatory

resources.

Request

Specification

Specifies the resources that are being requested in the Allocation Request.

Technical

Justification

A description of an observing process and considerations used to create an

Allocation Request.

Allocation

Disposition

The disposition of a given Allocation Request. Includes results of any

evaluation process, scheduling constraints, and proprietary information.

2.1.2.2.3 Use Cases

Page 21 of 46

2.1.2.2.4 Requirements Mapping

Since there is currently no definition for Related Proposals, TTA-L1-2.4.3 will be addressed in

the Logical Phase.

Note that TTA-L1-2.3.1 relates to proposals which are submitted for a “special” solicitation;

reviews for these solicitations are handled outside of the TTA Tools are therefore out of scope.

Page 22 of 46

2.1.2.3 Configure Review

NRAO primarily conducts two types of review processes, Panel Proposal Reviews and

Observatory Site Reviews. The Panel Proposal Review consists of Feasibility Reviews,

Individual Science Reviews and Consensus Reviews15. Feasibility and Individual Science

Reviews require panels to be created and maintained throughout the review process while

adhering to rules governing the relationships between reviewers, panels, and review materials.

The Configure Review package contains all the concepts needed to create and manage Science

and Feasibility reviews.

2.1.2.3.1 Science Review Configuration

In the view provided below, the Science Review represents a ternary relationship with the

following multiplicities:

(SRP, Reviewer) : 0..* Proposal

(SRP, Proposal) : 2..* Reviewer

(Reviewer, Proposal) : 1 SRP

Each part of the ternary relationship is determined by ‘fixing’ the association on the left to

determine the multiplicity on the right. This arrangement satisfies the requirements that a

Reviewer can only be on one Science Review Panel and each Proposal must be assigned two or

more Reviewers.

15 For details, see section 3.5 in “Telescope Time Allocation (TTA): System Description”, Balser et al., Jan. 31,

2020

Page 23 of 46

2.1.2.3.1.1 Primary Presentation

2.1.2.3.1.2 Element Catalog

Domain Object Definition

Science Review A panel-based, dual anonymous process designed to evaluate the

scientific merit of proposals.

Science Review

Panel (SRP)

A group of people who are tasked to review the scientific merit of a

Proposal. Each SRP has a chair and, potentially, a chair pro tem. There is

a many-to-many relationship between Science Categories and SRPs.

Reviewer A person who evaluates the scientific merit of a proposal.

2.1.2.3.2 Feasibility Group Configuration

In the view provided below, the Feasibility Review represents a ternary relationship with the

following multiplicities:

(FRG, Reviewer) : 0..* Allocation Request

(FRG, Allocation Request) : 0..* Reviewer

(Reviewer, Allocation Request) : 0..* FRG

Page 24 of 46

Each part of the ternary relationship is determined by ‘fixing’ the association on the left to

determine the multiplicity on the right. This arrangement expresses the many-to-many

relationship between Feasibility Review Groups, Reviewers, and Allocation Requests.

2.1.2.3.2.1 Primary Presentation

2.1.2.3.2.2 Element Catalog

Domain Object Definition

Feasibility Review A review of the feasibility (technical or data management) of a given

Allocation Request.

Feasibility Review

Group

Consists of one or more feasibility reviewers that are tasked to review

the same set of Allocation Requests.

Page 25 of 46

2.1.2.3.3 Use Cases

2.1.2.3.4 Requirements Mapping

Page 26 of 46

2.1.2.4 Review

NRAO primarily conducts two types of review processes, Panel Proposal Reviews and

Observatory Site Reviews. The Panel Proposal Review consists of Feasibility Reviews,

Individual Science Reviews and Consensus Reviews; information from the Feasibility and

Individual Science Reviews is used in the Consensus Review to quantitatively rank proposals.

The ranking is expressed in the Proposal Review entity. For Observatory Site Reviews, TTA

Group Members generate Proposal Reviews with qualitative scores.

The Review package contains all the concepts needed to conduct Panel Proposal Reviews and

Observatory Site Reviews.

2.1.2.4.1 Panel Proposal Review – Feasibility

The key idea in this arrangement is that the Feasibility groups produce comments which are

discussed and refined during the Consensus Review. The final resulting comments become part

of the Proposal Review entity.

2.1.2.4.1.1 Primary Presentation

2.1.2.4.1.2 Element Catalog

Domain Object Definition

Feasibility

Review Result

Structure containing feasibility comments associated with an Allocation

Request.

Page 27 of 46

Proposal

Review

An evaluation of the scientific merit and feasibility of the proposal. A

proposal review consists of comments for the PI, internal comments, and a

scientific merit metric.

2.1.2.4.1.3 Use Cases

2.1.2.4.2 Panel Proposal Review – Consensus Science

The key difference between the Consensus Science review and the Consensus Feasibility review

is that the science review involves scores (i.e. Individual Science Review scores - raw and

normalized-, Science Review Panels scores, and Normalized Linear-Rank scores) that

algorithmically yield a quantitative Scientific Merit Metric.

Page 28 of 46

2.1.2.4.2.1 Primary Presentation

2.1.2.4.2.2 Element Catalog

Domain Object Definition

ISR Review

Result

Structure containing information pertaining to an Individual Science

Review.

Score Structure containing SRP and Normalized Linear-Rank scores for a

proposal.

Proposal Review An evaluation of the scientific merit and feasibility of the proposal. A

proposal review consists of comments for the PI, internal comments, and a

scientific merit metric.

Page 29 of 46

2.1.2.4.2.3 Use Cases

2.1.2.4.3 Observatory Site Review

Observatory Site Reviews do not involve Feasibility groups or Science Review Panels. TTA

Group Members create Proposal Reviews entities and manually enter Boolean Scientific Merit

Metrics.

2.1.2.4.3.1 Primary Presentation

2.1.2.4.3.2 Use Cases

Page 30 of 46

2.1.2.4.4 Requirements Mapping

Page 31 of 46

2.1.2.4.5 Use Cases

Page 32 of 46

2.1.2.5 Allocate

The information produced by various review processes is used to allocate telescope time in Time

Allocation Committee meetings or Observatory Site Committee meetings or External Committee

meetings. Allocation Disposition entities model awards and include technical information related

to facility resources as well as comments from review groups. Allocation Disposition entities are

associated with Allocation Request entities. The Allocate package contains all the concepts

related to reports needed in the committee meetings that generate Allocation Dispositions.

2.1.2.5.1 Allocation Disposition

2.1.2.5.1.1 Primary Presentation

2.1.2.5.1.2 Element Catalog

Domain Object Definition

Allocation

Disposition

The disposition of a given Allocation Request to use observatory resources.

This includes scheduling priorities, approved time, disposition comments,

disposition constraints, and proprietary periods.

Page 33 of 46

2.1.2.5.2 Allocation Reports

TTA Group members draft reports providing narratives of the scheduling issues for each Facility.

These reports, along with pressure plots, are used in committee meetings to make allocation

decisions.

2.1.2.5.2.1 Primary Presentation

2.1.2.5.2.2 Element Catalog

Domain Object Definition

Proposal

Summary

A summary consisting of the PROPOSAL ID, NORMALIZED LINEAR-

RANK SCORE, SRP NAME, TELESCOPES, PRINCIPAL

INVESTIGATOR, CO-INVESTIGATORS, TITLE, ABSTRACT,

PRELIMINARY PRIORITIES, COMMENTS FOR THE PI, and

INTERNAL COMMENTS.

Facility Report

Pressure Plot A plot of the allocated hours as a function of LST (or GST) for a given

Facility, broken down by scheduling priority and weather.

Page 34 of 46

2.1.2.5.3 Use Cases

2.1.2.5.4 Requirement Mapping

Page 35 of 46

2.1.2.6 Approve

After committees make allocation recommendations, Directors (or their delegate) finalize

allocation decisions which are expressed in reports. The Approve package contains the report-

related entities.

2.1.2.6.1 Primary Presentation

2.1.2.6.2 Element Catalog

Domain Object Definition

Directors’

Review Report

A report written by the TTA Group for the NRAO/GBO Director that

summarizes the recommendations made by the TAC for semester

Solicitations.

Approval

Metrics

TTA Process Statistics

CSV Report A CSV formatted version of a Director’s report.

Page 36 of 46

2.1.2.6.3 Use Cases

2.1.2.6.4 Requirements Mapping

Page 37 of 46

2.1.2.7 Closeout

The Closeout package includes place-holder concepts related to the final steps of the TTA

process. These concepts will be further refined in subsequent phases.

2.1.2.7.1 Primary Presentation

2.1.2.7.2 Element Catalog

Domain Object Definition

Disposition Letter A letter (or email) sent to the authors of a submitted proposal that

summarizes the results of the review process.

TAC Metrics Time Allocation Committee statistics.

TAC Report Time Allocation Committee report.

2.1.2.7.3 Use Cases

Page 38 of 46

2.1.2.7.4 Requirements Mapping

TTA-L1-124 involves an interface to the archive which has not yet been analyzed; this

requirement will be addressed in the Logical Phase.

Page 39 of 46

2.1.2.8 Create Project

As described in the Architectural Refinements section, each AUI/NA Facility has a unique

project model and we plan to use the Anti-corruption Layer strategy to create an isolating layer

providing other systems with information or functionality in terms of their own domain model.

This strategy allows TTA to maintain a highly unified core conceptual model while supporting

any existing or future facility.

Refinement and development of this layer involves collaboration between different groups which

will occur in a subsequent phase.

2.1.2.8.1 Use Cases

Page 40 of 46

2.1.2.9 Package Dependencies

The purpose of this view is to show important conceptual dependencies between packages in the

Domain Layer. Some of the details in each package have been suppressed to highlight the key

dependencies.

Page 41 of 46

2.1.3 Application Layer

The Application Layer Model consists of a set of packages defining use cases which map to

sections 3.1 to 3.9 in “TTA Tools System Description”. In addition, the Application Layer Model

includes entities in the Application Layer that orchestrate the use of entities found in the Domain

Layer; these entities are modeled conceptually as Domain-Driven Design services (see 1.2.1.1).

The services have been derived from the use cases.

2.1.3.1 Solicitation Service

The Solicitation Service represents the minimum design that supports configuring and opening a

solicitation, modifying capabilities, and testing proposal validation. Initially, capability

information will be provided in the Solicitation Configuration File. Solicitations are sufficiently

complicated to require a factory as opposed to a simple constructor. A repository is required to

support multiple concurrent solicitations.

2.1.3.1.1 Primary View

Page 42 of 46

2.1.3.2 Proposal Service

The Proposal Service represents the minimum design that supports creating and vetting

proposals.

Note that the Proposal Service has an unrealistically high number of allocations in various

Satisfy matrices in the Domain Model. It is expected that the Proposal Service will be refined in

subsequent phases to, for example, provide efficient access to entities associated with Proposals

(e.g. Allocation Dispositions). A key advantage of the Logical Phase includes providing time for

the DMS Architect to collaborate with the SSA Architect on issues like the Proposal Service.

2.1.3.2.1 Primary Presentation

Page 43 of 46

2.1.3.3 Review Configuration Service

The Review Configuration Service represents the minimum design that supports managing

review groups, assigning reviewers to groups, and assigning proposals to reviewers.

2.1.3.3.1 Primary Presentation

2.1.3.4 Proposal Review Service

The Proposal Review Service represents the minimum design that supports Panel Proposal and

Observatory Site review processes.

2.1.3.4.1 Primary Presentation

Page 44 of 46

2.1.3.5 Author Information Service

The Author Information Service represents the minimum design that supports accessing author

information via the NRAO Account System or configuration files. NRAO is in the planning

phase of a project to update its user account system and this part of the design will be revisited at

a later date.

2.1.3.5.1 Primary Presentation

2.1.3.6 Service Dependencies

Figure 1Figure 7 shows the current relationships between Application Layer services and

Domain Layer packages. It is expected that the services and their relationships to Domain Layer

entities will change in the Logical and Physical phases.

Figure 7 Dependencies between services and packages.

Page 45 of 46

3 REFERENCED MATERIALS

1. "Telescope Time Allocation (TTA): Concept", Balser et al., 688-TTAT-002-MGMT, Jul.

02, 2019

2. “2019-03-TTA Tools Concept”, Kern et al., PowerPoint presentation

3. “2019-06-Project KickOff”, Kern, PowerPoint presentation

4. "Telescope Time Allocation (TTA): System Description", Balser et al., 688-TTAT-004-

MGMT, Mar. 13, 2020

5. “Pattern-Oriented Software Architecture: A Pattern Language for Distributed

Computing”, Vol 4, Buschmann et al., 2010

6. “Software Architecture in Practice”, Bass et al., 2013

7. “Designing Software Architectures: A Practical Approach”, Cervantes et al., 2016

8. “Domain-Driven Design: Tackling Complexity in the Heart of Software”, Evans, Eric,

2003

9. “Patterns of Enterprise Application Architecture”, Martin Fowler, 2003

10. “Growing Object-Oriented Software, Guided by Tests”, Freeman et al, 2009

11. “Telescope Time Allocation Tools Execution Plan”, Treacy, Kern, 688-TTAT-010-

MGMT, Version 0.01

Page 46 of 46

