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1 INTRODUCTION 

This is the second in a series of reports on the profiling and benchmarking of the ALMA pipelines, an 

ongoing work conducted by the Scientific Computing Group at NRAO. After the Phase 1 report that 

introduced the profiling framework and the methodology of this work, we conducted a series of tests to 

investigate the effects of resource selection and contention on run time. We focused primarily on imaging 

rather than calibration as the former was shown on the first report to be the more expensive pipeline. 

 

The tests conducted in this work were indicated as next steps in the conclusions of the Phase 1 report, 

consisting of a more in-depth investigation of the ALMA pipelines. In this context we present and discuss 

results for tests with different parallelization configurations (varying number of MPI processes and 

OpenMP threads), local storage types (NVMe and RAID0 array) vs. Lustre, memory limits (what is the 

effect of constraining memory?), and job concurrency (how does it affect throughput?). 

 

The tests reported and analyzed in this document were run on casa-release-5.4.0-68 for consistency with 

the results from the first report, so that phase 1 and phase 2 tests could be compared. We will run a 

series of tests with a more recent version of CASA on the next phase of this work. 

 

Confirming the scientific correctness of pipeline products was outside the scope of the work done. 

Comparisons with baseline products were performed to ensure there were no macro scale issues, but 

the testing process should not be viewed as sensitive to subtle imaging errors. 

 

2 UPDATED PROFILING FRAMEWORK 

To support profiling in a parallel context, the profiling framework from Phase 1 was modified to gather 

discrete memory, number and duration of system calls, and file descriptor counts from each MPI process. 

I/O shape and counts per pipeline execution versus Lustre were recorded to characterize parallelization 

effects on I/O. We developed a CASA log analysis tool to measure major and minor cycle times on tclean() 

calls. We also developed scripts that transparently redirect PPR-based pipeline submissions from local 

clusters to Amazon Web Services (AWS) and return the complete environment to the local cluster. This 

allowed access to a broader spectrum of hardware and provided additional resources to support the 

compute load. 

 

The per process data is collected by an external monitor that is called by the modified pipeline script, as 

represented in Figure 1. This external monitor uses ps and strace to collect data at fixed time intervals 

while keeping track of current CASA and pipeline tasks. 

 

 
Figure 1: Representation of the process hierarchy on parallel pipeline runs. 
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The external monitor, represented in Figure 1, synchronously communicates with the main CASA process. 

Blocking on MPI subprocesses can impact reported CASA and pipeline task run times.  To ensure the 

accuracy of reported run times, we record the monitor contribution to each task’s run time so that it can 

be corrected during analysis. 

 

3 DATA SELECTION AND PARAMETER SPACE COVERAGE 

Based on the conclusions in the Phase 1 report and given the limited computing resources, we chose four 

datasets which exhibited the broadest range of input data size, memory footprint and run times in the 

imaging pipeline.  To reduce the run time coverage gap shown in Figure 2 from the Phase 1 report, we 

reviewed four additional datasets from which one was selected. 

 

 
Figure 2: Serial imaging run times vs. image size and number of channels. Note the large gap in timing between 

~ 240 and 800 hours. The red circle near 240 hours run time was selected to reduce this timing gap, 

corresponding to dataset E2E6.1.00080.S. 

 

The following datasets were selected: 

 2017.1.00717.S 

 2017.1.00884.S 

 2017.1.00983.S 

 2017.1.01214.S 

 E2E6.1.00080.S 
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4 METHODS AND MEASUREMENTS 

All tests were executed on the AOC cluster and Amazon Web Services (AWS). Initially, tests were 

performed on the AOC cluster to establish a baseline to which the AWS tests could be compared.  This 

allowed us to detect and account for potential systematic effects within AWS. 

 

The following tests were performed on the AOC cluster: 

 Serial benchmarks for all datasets 

 Parallelization breadth (number of MPI processes) 

 Storage type 

 Concurrency 

 

Nodes on the AOC cluster were selected as follows, according to test requirements and properties.  

 nmpost001-050 for parallelization breadth (to be consistent with phase 1) and storage  

 nmpost051-060 for concurrency (and also parallelization breadth) 

 

The following tests were performed on AWS: 

 Parallelization breadth (number of MPI processes) 

 Memory limit 

 Timing vs CPU type 

 Number of OpenMP threads 

 

The tests were executed with a script that takes a locally submitted PPR based pipeline and automates all 

the steps required to run on AWS (e.g. start an appropriate instance and image, copy data, run the pipeline, 

copy data back). One or more AWS instances were selected for each specific test, matching test 

requirements and instance properties, which are presented in Section 5. 

 

A total of 122 pipeline runs were considered in this work. From the raw profiling data, an auxiliary database 

was built, consisting of detailed timing data for the complete pipeline, as well as the imaging tasks 

hif_findcont() and hif_makeimages() (total and tclean() only run times). The lines in that database are 

identified by project name, number of MPI processes, number of OpenMP threads, memory limit, storage 

type and CPU, so that data can be queried and extracted for analysis of each individual test case. 

 

5 RESULTS 

The profiling and benchmark results are presented in the subsections below, broken out by type of test: 

parallelization breadth, storage type, memory limit, concurrency, OpenMP and timing vs. CPU. The 

subsections are independent, each consisting of a description of the test, expected results, data analysis, 

results and conclusions. 

 

5.1 Parallelization breadth (MPI) 
 

To demonstrate the effects of parallelization, run time tests were performed on both calibration and 

imaging pipelines. The full range of parallelization breadths (2-, 4-, 8-, 16-way) of all five datasets was 

performed on the AOC cluster, while tests with 8- and 16-way parallelization of all datasets and an 

additional 24-way parallelization of the 2017.1.00983.S dataset were performed on AWS with the imaging 

pipeline. We also ran the calibration pipeline serially and with 8-way parallelization for all five datasets on 
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AWS. We used instance type m5.12xlarge (48 vCPUs, Intel Xeon Platinum 8175, and 192 GB RAM) to 

run all the AWS tests reported in this section. 

 

Tests of the calibration pipeline were run only on AWS. Since the pipeline is not set to create multi-MS, 

the only pipeline task expected to run faster with higher parallelization is hif_makeimages() which calls 

tclean(), which is not a dominant contributor to run times in the calibration pipeline (see Phase 1 report). 

For each dataset, there was one serial run and one with 8 MPI processes. We considered the run times 

of the serial runs as baselines, and computed relative run times for each pipeline task on the 8-way 

parallelization run with respect to the baseline serial run. The results are shown in Figure 3. 

 

 
Figure 3: Relative timings for calibration pipeline runs with 8-way parallelization. Relative timings are computed with respect 

to the run time of the serial runs for each dataset. 

 

The plot in Figure 3 shows that, for the calibration pipeline, run time only differs significantly within the 

pipeline task hif_makeimages() for serial and 8-way parallelization. While the parallel executions 

demonstrated a 65% to 83% decrease in run time within hif_makeimages(), the full pipeline run time was 

only reduced by 1% to 15%. 

 

These results confirm that the run time of the calibration pipeline is only marginally reduced by increasing 

parallelization. Since it is only while imaging the calibrators that the calibration run time is reduced with 

increasing parallelization breadth, at this point we turn our attention to the imaging pipeline and focus on 

it for the remainder of this document. 

 

The results for tests of the imaging pipeline with 2-, 4-, 8- and 16-way parallelization on AOC cluster and 

8-, 16- and 24-way parallelization on AWS are summarized in Table 1. 
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Table 1: Run times of the imaging pipeline with all datasets and all parallelization breadth test cases 

Dataset 2017.1.00717.S 2017.1.00884.S 2017.1.00983.S 2017.1.01214.S E2E6.1.00080.S 

CPU E5-2670 m5.12xlarge E5-2670 m5.12xlarge E5-2670 m5.12xlarge E5-2670 m5.12xlarge E5-2670 m5.12xlarge 

N
u
m

b
e
r 

o
f 
 M

P
I 
p
ro

ce
ss

e
s 

1 69h44m55s 35h36m19s 32h05m30s 14h58m33s 829h38m52s  18h41m15s 06h53m20s 304h24m49s 110h53m05s 

2 64h42m39s  17h53m00s  397h19m58s  12h20m53s  138h17m48s 92h01m43s 

4 47h17m52s  13h37m18s  229h03m40s  10h03m31s  86h24m04s 56h34m59s 

8 30h18m16s 19h54m54s 14h46m49s 07h01m10s 149h43m54s 100h17m48s 08h27m49s 05h09m30s 57h10m05s 37h04m39s 

16 24h50m40s 16h29m53s 14h06m46s 06h58m50s 110h22m54s 74h05m00s 08h39m06s 05h19m57s 45h19m57s 26h56m13s 

24      67h27m08s     

 

The run times are also shown in Figure 4, computed relative to the serial run time, to allow comparison 

of the performance between datasets with different run times. 

 

 
Figure 4: Relative run times (computed w. r. t. serial run times) as a function of parallelization breadth on AOC cluster (left) 
and AWS (right). The black solid line is the theoretical limit - points below that line are attributed to artificially slow serial 

runs. The yellow dashed line is based on a serial run time estimate and was added to the plot to illustrate the run time trend 
for that dataset. 

 

The overall trend in Figure 4 is in agreement with the expectation that run times should monotonically 

decrease with increasing parallelization breadth, at the theoretical limit of 1/X with respect to the serial 

run time, where X is the number of parallel processes. 

 

Visible on the AOC plot (left in Figure 4) is a data point slightly below the theoretical limit. Since it is not 

possible that the run time of a job with 2 processes is reduced by more than 50% with respect to the 

serial run, we consider that this is an artifact caused by the serial run being artificially slow. In this particular 

case, the serial run time (Table 1) is slightly over one month, which increases the likelihood of that run 

being affected by service instabilities. Two other attempts to rerun that serial case failed due to such 

instabilities. 

 

Also present in Figure 4 are unexpected data points where the time increases with increasing 

parallelization breadth. These were selected for an in depth investigation of hif_makeimages() and 

ultimately tclean(), as the latter is currently the only task configured to use MPI in the imaging pipeline. 

This investigation is presented and discussed in detail in Section 6. 
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5.1.1 Memory footprint scaling with parallelization breadth 
 

An important aspect of imaging parallelization using MPI is how memory footprint scales with 

parallelization breadth. Since one full size image is created for each MPI process in parallel imaging, the 

memory footprint is expected to increase linearly with the number of MPI processes, except in the cube 

imaging case where the use of chanchunks can mitigate the effect. 

 

This scaling can be demonstrated indirectly by analyzing the effect of parallelization breadth on the 

aggregate memory footprint from tclean() and the number of chanchunks. As seen in Figure 5, our 

measurements of the memory footprint of tclean() do not appear to increase linearly with parallelization, 

rather staying roughly close to constant over the range, except for the smallest memory footprint in the 

sample, that shows an increase close to linear. 

 

 
Figure 5: Memory footprint of tclean() as a function of parallelization breadth. The measurements were obtained from 

pipeline runs in which the chanchunks mechanism was enabled. 

 

Since the memory footprint stays roughly constant, we analyze the number of chanchunks as a function 

of parallelization breadth, as shown in Figure 6.  
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Figure 6: Chanchunks as a function of parallelization breadth, grouped by dataset. 

 

Analysis of the plots in Figures 5 and 6 indicate that the number of chanchunks show an approximate 

linear scaling with parallelization breadth, while the memory footprint remains nearly constant. This is 

consistent with a memory footprint scaling linearly with parallelization breadth if chanchunks was not 

enabled. This analysis also suggests that the memory footprints are in good agreement with what CASA 

estimates before imaging, as this estimate is the basis for determining the number of chanchunks to use. 

 

5.2 Storage type 
 

The imaging pipeline was run against local storage on a RAID0 array and an NVMe device, to investigate 

the effect of different I/O data rates on pipeline run time. The NVMe device is expected to be faster in all 

test cases, however the precise improvement depends on the I/O access patterns for each dataset and 

task. 

 

The results for tests of different storage types are shown in Figure 7. The tests were executed with 16-

way parallelization as this is the most demanding case in terms of I/O. The NVMe device used for this 

series of tests was relatively small (1.5 TB), so only 3 out of 5 datasets could be imaged with this device. 

Similarly, the largest dataset (2017.1.00983.S) was also too big for the RAID0 array at run time, so we 

could not run imaging for that dataset with any storage type other than Lustre. 
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Figure 7: Pipeline run times for different storage types for all datasets with 16-way parallelization. The missing NVMe data 

points are because that dataset requires more space than the capacity of the device (1.5 TB) at run time. 

 

The data plotted in Figure 7 indicates that both the RAID0 array and NVMe device were faster than Lustre 

to run the imaging pipeline. However, the run times were only slightly reduced (~ 8% RAID0 vs. Lustre; 

~ 13% NVMe vs. Lustre), except for one particular case with significantly shorter run times 

(2017.1.00884.S run times reduced by 28% RAID0 vs. Lustre and 48% NVMe vs. Lustre). 

 

Our sample shows consistently faster runs with RAID0 and NVMe. We consider that further investigation 

would be required to understand the performance variations as a function of dataset. Further tests will 

require either additional representative small dataset sizes or larger storage devices. 

 

5.3 Memory limit 
 

We investigate the effect of memory contention on the run times of the imaging pipeline by constraining 

the memory that CASA is allowed to use. This is set using the parameter “system.resources.memory” in 

the ~/.casarc file, and for the tests reported here it was set to 64 and 128 GB. We also ran tests in which 

a memory limit was not set to let CASA figure out the memory available (should be most of the memory 

in the node as these are dedicated jobs). All the tests ran on AWS instance r5.8xlarge, with 32 vCPUs, 

Intel Xeon Platinum 8175, and 256 GB RAM. The results for these tests are shown in Figure 8.  
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Figure 8: Pipeline run time as a function of memory limit for all datasets with 8-way parallelization. 

 

We did not observe any significant changes in run time as a function of memory limit, with only one data 

point showing a 5% variation with respect to the mean, and all other data points within a ± 3%  range. 

According to these results, a memory limit of 64 GB does not have significant impact on run time for the 

range of ALMA operations represented by our sample. 

 

5.4 Concurrency 
 

The aim of these tests is to investigate if and how throughput can be improved by running multiple jobs 

on a node. The following terms are used in this section: 

 isolated - an isolated job is the only job running on a node 

 concurrent - denotes a group of jobs that run simultaneously on a node 

 siblings - the jobs that run concurrently are siblings of each other 

 clones - siblings that are copies of the same pipeline and data 

 

It is expected that siblings run slower due to contention when compared to isolated jobs, but that N 

concurrent jobs will complete faster than N isolated jobs run sequentially. For the tests, we utilized clones 

rather than siblings with different datasets.  This scenario is likely to be more demanding in terms of 

resources than a real-world scenario where different jobs are running concurrently since clones are more 

likely to compete for the same resources at the same time. The concurrency test cases were designed to 

maximize the number of concurrent jobs on a node with 16 CPUs and 256 GB of memory: 

 

 2 jobs x 8 way parallelization & 125 GB / job 

 4 jobs x 4 way parallelization & 62 GB / job 

 

To run these tests, we selected one dataset for which serial run-time is ~ 200 hours and memory footprint 

is ~ 100 GB. The results are shown in Figure 9. 
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Figure 9: Imaging pipeline run times with dataset E2E6.1.00080.S for all concurrent jobs on a node is shown in blue. The run 

time of an isolated job on a node with the same number of MPI processes is shown in red. 

 

The impact of contention on the timing of concurrent siblings versus the same dataset run in isolation is 

larger for 4-way parallelization. The jobs complete in 106 hours, while an isolated job runs with 4 cores 

on a dedicated node in 76 hours. For 8-way parallelization, the concurrent jobs complete in 59 hours, 

while the isolated job runs with 8 cores in 56 hours. That is 40% longer with the 4-way, and 7% longer 

with 8-way parallelization. 

 

The penalty in performance with respect to isolated jobs is most likely due to memory swapping. Shown 

in Figure 10 is the swap memory as a function of progress for concurrent and isolated jobs. The plot 

shows heavy swapping in the concurrent case with 4 processes per job as compared to any other curve. 

 

 
Figure 10: Swap memory as a function of progress for the concurrent 4 jobs with 4 processes per job (blue) and 2 jobs with 8 
processes per job (green). The single job cases are shown for comparison with 4 processes per job (orange) and 8 processes 

per job (red). 
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There are two likely causes for this swapping:  

1. Failure to limit CASA memory through both casarc and job submission (cgroups) resulting in 

CASA assuming there is more free memory for each job. 

2. Static memory allocation within Python per pipeline execution. 

More investigation in Phase 3 will be necessary to determine the precise cause. 

 

Although concurrent jobs are slower when compared to isolated jobs with the same number of processes, 

they still run faster than the same number of jobs running in sequence in a dedicated node with 16-way 

parallelization, as shown in Figure 11. 

 

 
Figure 11: Time to complete 4 jobs with the Imaging pipeline and dataset E2E6.1.00080.S. The top bar shows 4 isolated  jobs 
run sequentially with 16 MPI processes each. The bar in the middle shows the average time to run 2 clone jobs with 8 MPI 

processes each, repeated to complete 4 jobs. The bottom bar shows the average time to complete all 4 clone jobs with 4 MPI 
processes each. 

 

In this case, 4 jobs taken 2 at a time with 8-way parallelization run in 35% less time than 4 jobs run 

sequentially with 16-way parallelization. Four jobs with 4-way parallelization run in 42% less time than the 

same 4 jobs run sequentially with 16-way parallelization. This shows that if there is sufficient memory to 

avoid swapping, then running more jobs on a node with lower parallelization breadth can potentially 

increase throughput, as well as cluster usage and efficiency. 

 

5.5 OpenMP 
 

As discussed in Section 5, MPI parallelization improves the performance of the imaging pipeline at the cost 

of increasing the memory footprint because it parallelizes in the visibility domain. On the other hand 

OpenMP is multi-threaded instead of multi-process, and in the case of CASA imaging parallelizes in the 

image domain. Due to computational redundancy, it is expected that OpenMP may be inferior to MPI in 

terms of performance, but has the advantage of keeping the memory footprint constant as the number of 

threads increase. 
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We selected dataset E2E6.1.00080.S to run OpenMP tests due to its typical run time and how it scales 

with parallelization breadth. The results are presented in Figure 12. All the tests reported in this section 

were run on AWS instance m5.12xlarge, with 48 vCPUs, Intel Xeon Platinum 8175, and 192 GB RAM, for 

consistency with the MPI parallel runs. All tests were setup so that the number of MPI parallel processes 

multiplied by the number of OpenMP threads was equal to the number of (physical) cores on the instance 

(16): 

 

 2 MPI workers x 8 OpenMP threads 

 4 MPI workers x 4 OpenMP threads 

 8 MPI workers x 2 OpenMP threads 

 

 
Figure 12: Pipeline run times for dataset E2E6.1.00080.S as a function of number of MPI processes and OpenMP threads. 

 

The results in Figure 12 show the most significant reduction of run time as a function of increased MPI 

processes. Maximizing the number of threads for a given number of processes has a smaller effect than 

increasing number of processes. 

 

The fastest run was with 16 single threaded MPI processes which suggests that MPI parallelization is more 

advantageous than OpenMP while there is sufficient memory to support additional processes. 

 

5.6 Timing performance vs. CPU 
 

To characterize the imaging pipeline performance with different CPU types, a series of tests was run on 

the following AOC cluster node class and AWS instances: 

 

 nmpost001-nmpost050, Intel Xeon E5-2670, 16 CPUs, 192 GB RAM, Passmark 12114 

 d2.4xlarge, Intel Xeon E5-2676 v3, 16 vCPUs, 122 GB RAM, Passmark: 17670 

 r4.4xlarge, Intel Xeon E5-2686 v4, 16 vCPUs, 122 GB RAM, Passmark: 19801 

 c4.8xlarge, Intel Xeon E5-2666 v3, 36 vCPUs, 60 GB RAM, Passmark: 24877 

 m5.8xlarge, Intel Xeon Platinum 8175, 16 vCPUS, 128 GB RAM, Passmark: 28103 
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The Passmark is an industry standard benchmark that establishes a scale to quantify CPU performance 

differences. 

 

To minimize expense of executing the full breadth of tests, datasets with shorter run times were selected 

to run these tests - 2017.1.00717.S, 2017.1.00884.S and 2017.1.01214.S. We ran the imaging pipeline for 

these three datasets with the four different CPUs on AWS (2017.1.00884.S only completed on m5.8xlarge 

due to its memory footprint). Along with the baseline runs on the AOC cluster, our total sample consists 

of 12 data points. The tests were run serially on dedicated nodes, with all the memory available. The run 

times resulting from these tests are shown in Figure 13. 

  

 
Figure 13: Imaging pipeline run times on different CPU types. The missing times on dataset 2017.1.00884.S are runs that  did 

not complete due to insufficient memory. The labels on the horizontal axis contain the node/instance type, CPU type and 
Passmark, in this order. 

 

The plot in Figure 13 shows that pipeline run times decrease with newer generation CPUs, consistent 

with their higher Passmark score. The Passmark benchmark is a measure of CPU performance, as such it 

can be a good proxy for CPU dominated tasks such as tclean(). Passmark’s predictive ability is less for I/O 

dominated tasks. When considering new hardware, the Passmark score can help when comparing 

processors, but is not necessarily predictive of pipeline run times. 

 

6 INVESTIGATION OF RUN TIMES INCREASING WITH 

PARALLELIZATION 

The imaging pipeline run times were shown in Section 5 to decrease as expected with parallelization 

breadth (number of MPI processes) in the majority of our sample. While presenting and discussing those 

results, it was pointed out that there were some cases where the run time unexpectedly increased with 

parallelization breadth. We now turn our attention to these cases, going deeper on the analysis of task 

timings. 
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We start investigating run times increasing with parallelization breadth by computing the individual run 

times of the largest contributors to total pipeline run time: hif_findcont() and hif_makeimages(), which are 

the tasks that call tclean(). Again, we compute the relative timings with respect to the serial case to 

produce the plots shown in Figure 14. 

 

 

 
Figure 14: Relative aggregate run times of tclean() calls on individual pipeline tasks hif_findcont() (top left) and 

hif_makeimages() with specmode set to ‘mfs’ (top right), ‘cont’ (bottom left) and ‘cube’ (bottom right). 

 

Shown on Figure 14 are the aggregate run times of tclean() calls on each pipeline task. Analysis of these 

plots in conjunction with the Figure 4 plots indicates that the run times increasing with parallelization 

come from the CASA task layer, not the pipeline task layer. It also shows that continuum imaging scales 

as expected with parallelization breadth when all spectral windows are combined (identified in the pipeline 

as specmode=’cont’; hif_makeimages() second call), while run time increases with parallelization breadth 

on individual spectral windows (identified as specmode=’mfs’; hif_makeimages() first call). 

 

From this analysis, we identify the tclean() calls on the first and third calls of hif_makeimages() (respectively 

specmode=’mfs’ and ‘cube’) for further investigation, as these are the pipeline tasks showing more run 

times increasing with parallelization breadth. In the next section, we present and discuss the results for 

an expanded investigation of tclean() cycle timings. 

 

6.1 Expanded investigation of tclean() 
 

In the previous section we identified pipeline tasks and datasets which showed unexpected increased 

tclean() timings for specific parallelization breadths. The datasets 2017.1.00884.S and 2017.1.01214.S show 

run times of continuum imaging per spectral window (‘mfs’) decreasing as expected up to 8 parallel 

processes, but increased in time with 16 processes. On the other hand, dataset 2017.1.00717.S shows an 
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increase in run time of cube imaging with 2 parallel processes, turning to faster runs with increasing 

parallelization breadth for 4-, 8- and 16-way parallelization breadth. 

 

In order to understand these unexpected variations in imaging run time, we computed major and minor 

cycle times, as well as number of major cycles, for each execution of tclean(). We compare cycle timings 

for all datasets as a function of parallelization breadth to determine what are the dominant sections in run 

time, and how that changes with parallelization breadth to result in the timing increases that we see on 

‘mfs’ for datasets 2017.1.00884.S and 2017.1.01214.S. The cycle times are shown in Table 2, with lines 

grouped by dataset, and columns for values of parallelization breadth. 

 
Table 2: tclean() cycle times of continuum imaging vs. parallelization breadth 

  2 cores 4 cores 8 cores 16 cores 

2017.1.00717.S 

start up time 709 664 772 1060 

time on major cycles 8360 4473 2295 1432 

time on minor cycles 21 25 24 37 

scatter/update model time 16 15 32 52 

TOTAL 9106 5177 3123 2581 

2017.1.00884.S 

start up time 268 288 359 522 

time on major cycles 992 624 398 284 

time on minor cycles 18 19 21 21 

scatter/update model time 5 7 14 27 

TOTAL 1283 938 792 854 

2017.1.00983.S 

start up time 2598 2741 3084 3556 

time on major cycles 95753 54381 29545 16292 

time on minor cycles 86 93 85 102 

scatter/update model time 20 54 74 128 

TOTAL 98457 57269 32788 20078 

2017.1.01214.S 

start up time 633 657 813 1151 

time on major cycles 1089 644 421 323 

time on minor cycles 8 8 12 14 

scatter/update model time 9 18 29 43 

TOTAL 1739 1327 1275 1531 

E2E6.1.00080.S 

start up time 796 860 986 1257 

time on major cycles 5107 2643 1390 741 

time on minor cycles 0 0 0 0 

scatter/update model time 8 5 13 20 

TOTAL 5911 3508 2389 2018 

 

The two dominant terms in data shown in Table 2 are ‘start up time’ and ‘time on major cycles’. The ‘start 

up time’ is the entire time interval before the first major cycle starts. The ‘time on major cycles’, on the 
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other hand, is actually the gridding phase of the major cycle, while ‘scatter/update model time’ refers to 

the degridding. For these two dominant terms, we see that ‘start up time’ increases with parallelization 

breadth, while ‘time on major cycle’ decreases. The latter is expected as we know from the 

implementation of tclean() that gridding is the stage that benefits the most with parallelization. By analyzing 

the total tclean() time we notice that as the ‘start up time’ becomes the dominant factor, time begins to 

increase with parallelization breadth, and that affects the two datasets with shortest imaging times in our 

sample. For the same reason, the imaging cases with longer run times are the ones that show better 

overall scaling with parallelization breadth. 

 

The increase in tclean()’s ‘start up time’ with parallelization breadth as shown in Table 2 may warrant 

further investigation in order to increase the effectiveness and scalability of parallelization. 

 

Next we analyze the anomalies in run time with 2-way parallelization observed in cube imaging for the 

datasets 2017.1.00717.S and 2017.1.00884.S. Figure 15 is a plot of tclean() run times for each spectral 

window with 2017.1.00717.S, showing that run times increase from serial to 2-way parallelization on all 

but two spectral windows, namely spw 45 and 47, and the latter shows an increase from 2- to 4-way 

parallelization. 

 

 
Figure 15: tclean() cube imaging run time on each spectral window as a function of parallelization breadth for dataset 

2017.1.00717.S. 

 

Again, we compute cycle times and number of major cycles for all tclean() calls, as shown in Figure 16. 

The average major cycle time decreases with parallelization breadth as expected. On the other hand, we 

found large variations in the number of major cycles on at least two spectral windows, while it was 

expected to be constant (or nearly constant) with parallelization breadth. 
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Figure 16: Average tclean() major cycle times (left) and number of major cycles (right) on each spectral window for dataset 

2017.1.00717.S. 

 

Our analysis indicates that the different number of major cycles in cube imaging is due to the data being 

split across the different parallel processes and CLEANed independently. As each process gets a subset 

of the channels in a spectral window, and executes major and minor cycles independent of the other 

processes, CLEAN convergence to a common threshold can be different for each subset of channels, and 

variations will also occur when the number of channels in each subset changes with parallelization breadth. 

This may warrant further investigation to ensure that science products are not impacted by changes in 

parallelization breadth. 

 

When applying the same analysis to 2017.1.00884.S, it was found that the cubes were only produced in 

the serial case. All MPI parallel runs with this dataset reached ‘zero mask’ stopping criterion after making 

the dirty beam. This clearly explains the otherwise impossible decrease in run time, and also indicates that 

the behavior of this dataset against MPI runs requires further investigation. 

 

An important remark is that the duration of each individual major cycle decreases as a function of 

increased parallelization breadth, even in the cases shown in this section where the total imaging time may 

have increased.  

 

7 CONCLUSIONS 

In this second report on benchmarking and profiling the ALMA pipeline, we present a more in depth 

analysis of the pipeline performance, indicated as next steps in the Phase 1 report. Tests of the ALMA 

pipeline were conducted with various hardware configurations, resource constraints (e.g. memory) and 

parallelization strategy to show how run times, memory footprints and I/O patterns vary in those different 

test cases. A summary of the main findings reported in this document is shown next. 

 

Because the calibration pipeline does not trigger MMS generation, only the tclean() portion of the 

hif_makeimages() pipeline task benefits from parallelization. Therefore the reduction of calibration pipeline 

run times due to MPI parallelization is very small (15% or less in our sample). On the other hand, we 

found the imaging pipeline run times for the majority of datasets decreased nearly linearly with increasing 

number of MPI processes. Realized performance gains from parallelization are negatively impacted by the 

fact that tclean() initialization times increase with parallelization breadth. In some simple imaging cases this 

increase can be greater than the corresponding decrease in actual imaging time, resulting in a total increase 

in tclean() time. In addition, as described in Section 6, the number of major cycles in cube imaging can vary 

as a function of number of MPI processes, which drives tclean() run times. If desired, we will further 

investigate this behavior in phase 3. 
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Our tests consistently showed shorter run times of the imaging pipeline with RAID0 and NVMe storage 

types, with some variation in improvement as a function of dataset. The improvements observed in run 

times (typically less than 15%) with those storage devices, in particular the NVMe, are too small to justify 

the cost (~30% per node) of changing from the current storage model. Note that Terabyte class datasets, 

which may exhibit different behavior, could not be tested due to the size of the available storage devices. 

Demonstrating the effect of these storage types for large datasets will require new, larger devices. 

 

The tests of the imaging pipeline with 8-way parallelization with memory constrained to 16 GB and 8 GB 

per process via casarc configuration (to mimic available physical memory) did not show any appreciable 

difference in run time versus the 32 GB per process non constrained case. Further tests would be needed 

to investigate behavior on environments below 8 GB per process. 

 

We performed job concurrency tests with the imaging pipeline and a representative dataset, showing that 

if there is sufficient memory to avoid swapping, running more jobs on a node with lower parallelization 

breadth increases throughput, as well as cluster usage and efficiency. The 4-way concurrency test 

demonstrated periods of swapping but was still the most efficient case.  While the 4-way concurrency test 

appears to be the most efficient mode, we recommend isolated or 2-way concurrency with 8-way 

parallelization until swapping behavior is better understood. We will investigate the cause of this swapping 

as part of a re-examination of memory usage in current versions of CASA during Phase 3. 

 

We showed that MPI parallelization has a performance advantage over OpenMP when there is enough 

memory available to support more MPI processes. If system memory is exhausted and there are unused 

cores then OpenMP can be advantageous (e.g. 8 MPI processes of 2 threads each on a 16 core machine). 

 

Reduction in imaging pipeline run times was demonstrated by running against different AWS instances 

with various newer generations of CPUs. When compared against Passmark, shorter run times were 

consistent with higher Passmark scores, suggesting that higher Passmark scores are likely to be indicative 

of faster runs. 

 

8 NEXT STEPS 

A third and final phase of this work is planned for the upcoming months, in which we intend to: 

 

 Rerun a subset of the tests with a newer version of CASA (most likely the pre-release that is 

current when new tests begin) 

 Investigate the following points in this report: 

o Different number of major cycles for different parallelization breadth 

o Low memory behavior including swap memory usage for concurrent jobs 

o Performance of different storage types with larger datasets 

 Enable access to CPU event counters via the PAPI (Performance Application Programming 

Interface - https://icl.utk.edu/papi/overview/index.html), to allow relating software performance to 

processor events 

 Investigate locking overhead in parallel runs of self calibration when updating the model column 

(CAS-12612) 

 As time allows, perform tests identified by operations and CASA developers. 

 

https://icl.utk.edu/papi/overview/index.html

