

Title: DMSD Soft. Dev. Processes Author: Rafael Hiriart Date: 04-13-2018

NRAO Document #: Version: 1.0

DMSD Software Development Processes

PREPARED BY ORGANIZATION DATE

Rafael Hiriart NRAO 6/6/2016
Morgan Griffith NRAO 4/13/2018

APPROVALS (Name and Signature) ORGANIZATION DATE

Brian Glendenning NRAO 4/13/2018
Approved by M. Griffith and B. Glendenning via NRAO
Workflow.

RELEASED BY (Name and Signature) ORGANIZATION DATE

Change Record

VERSION DATE REASON

0.1 01/18/2016 Draft version for review.

0.2 03/11/2016 Incorporating feedback from DMSD Leads, Eduardo Miranda and
Lory Wingate.

0.3 06/06/2016 Incorporating a section about notifications, and introducing the roles
of component lead and scientist.

0.4

1.0

02/16/2018

4/13/2018

Fix reference links, M. Griffith to make edits

Incorporating feedback from teams

VERSION DATE REASON

 1

Table of Contents
1 Introduction .. 4

1.1 Purpose .. 4
1.2 Change Management .. 4
1.3 Scope ... 4
1.4 Document Structure .. 5
1.5 References ... 5
1.6 Abbreviations and Acronyms .. 5

2 CASA PMD Requirements Project Recommendations Traceability ... 6
3 Software Testing Verification and Validation ... 7
4 Agile Projects ... 8
5 Release Management ... 8
6 Software Configuration Management .. 9
7 Request Types and Scheduling ... 10

7.1 Bug ... 11
7.2 Feature ... 11
7.3 Engineering Task .. 12
7.4 Epic ... 12
7.5 Research request ... 13

8 Roles and Responsibilities ... 13
8.1 Reporter .. 13
8.2 Project Scientist .. 13
8.3 Group Lead ... 14
8.4 Component Lead ... 14
8.5 Component Scientist ... 14
8.6 Project Manager .. 14
8.7 Software Architect .. 14
8.8 Developer .. 14
8.9 Test Engineer .. 14
8.10 Validator .. 15
8.11 Acceptance Body .. 15
8.12 Expert .. 15

9 Bug Workflow .. 16
9.1 State: Open .. 16
9.2 State: Unscheduled ... 17
9.3 State: Input Required .. 18
9.4 State: Scheduled .. 18
9.5 State: Ready to Verify ... 19
9.6 State: Under Verification ... 20
9.7 State: Ready to Validate .. 21
9.8 State: Under Validation ... 22
9.9 State: Resolved ... 22
9.10 State: Completed ... 23
9.11 State: Closed .. 23

10 Feature Workflow ... 24

 2

10.1 State: Open .. 24
10.2 State: Unscheduled .. 25
10.3 State: Input Required ... 26
10.4 State: Scheduled .. 27
10.5 State: Ready to Verify ... 28
10.6 State: Under Verification ... 28
10.7 State: Ready to Validate .. 29
10.8 State: Under Validation ... 30
10.9 State: Resolved .. 30
10.10 State: Completed ... 31
10.11 State: Closed .. 32

11 Engineering Task Workflow ... 32
11.1 State: Open .. 32
11.2 State: Unscheduled .. 33
11.3 State: Input Required ... 34
11.4 State: Scheduled .. 35
11.5 State: Ready to Verify ... 35
11.6 State: Under Verification ... 36
11.7 State: Resolved .. 37
11.8 State: Completed ... 37
11.9 State: Closed .. 38

12 Epic Workflow ... 38
12.1 State: Open .. 39
12.2 State: Unscheduled .. 40
12.3 State: Input Required ... 41
12.4 State: Scheduled .. 41
12.5 State: Ready to Verify ... 42
12.6 State: Under Verification ... 43
12.7 State: Ready to Validate .. 44
12.8 State: Under Validation ... 44
12.9 State: Resolved .. 45
12.10 State: Completed ... 45
12.11 State: Closed .. 46

13 Research Project Workflow .. 46
13.1 State: Open .. 47
13.2 State: Unscheduled .. 48
13.3 State: Input Required ... 49
13.4 State: Scheduled .. 49
13.5 State: Resolved .. 50
13.6 State: Closed .. 51

14 Notifications ... 51
15 Artifacts .. 52

15.1 Requirement Specification Document .. 53
15.2 Project Plan Template .. 54
15.3 Test Plan Template .. 54
15.4 Test Report Template ... 55
15.5 Validation Plan Template .. 55

 3

15.6 Validation Report Template ... 55
15.7 Release Acceptance Plan Template ... 55
15.8 Release Acceptance Report Template ... 56

16 Colocation of team staff ... 57
17 Appendix A: Implementation Notes .. 58
18 Appendix B: Group Management Document Template ... 59

 4

1 Introduction

1.1 Purpose
This document describes the software development processes adopted by NRAO Data Management
and Software Department.

1.2 Change Management
Changes to this document must be approved by the DMSD Software Division Head and subsequently
distributed to all members of the DMSD Software Leads team.

1.3 Scope
The processes defined in this document are mostly based on the Recommendations for Improvement
report for the CASA group [1]. The recommendations outlined in this report have been generalized so
they can be adopted by other DMSD development groups besides CASA. See Section 2 for the list of
recommendations, and details about the way they have been addressed or implemented.
The processes described in this document will be adopted by all development groups in DMSD, with
three exceptions:

1. For now, it was decided that Green Bank development group will continue with its already
established software development processes. This decision will be re-evaluated after the
results of the GBT divestiture are known.

2. ALMA development groups in NRAO (Control/Correlator and Scheduling) will continue to
follow ALMA development processes.

3. AIPS and Obit development groups will also continue with their current development
processes.

ALMA development groups are bound to follow the already defined ALMA development processes.
It is worth noting, however, that to a large extent the development processes defined in this document
are compatible with ALMA processes, and the experience from ALMA NRAO development groups
have been incorporated. See [2] for a description of ALMA software delivery process.
This document doesn't try to define all possible processes related with the software development
activities. Instead, it defines a framework, prescribing some essential processes and artifacts, but
leaving others to the discretion of each development group (and DMSD management), which should
apply standard methods and practices from system and software engineering to the specific
conditions of its development environment. The focus is on defining standard roles, responsibilities
and interfaces between DMSD and its external stakeholders.
Software development processes will evolve as the organization matures and accumulates experience.
This document should be viewed as a first step toward standardizing DMSD software development
processes. Some aspects that have been left for each group to define and implement could be
normalized across DMSD in future revisions.

 5

1.4 Document Structure
The first part of this document discusses several general subjects. As mentioned before, Section 2
provides traceability between the process recommendations from [1] and the processes defined in this
document. Section 3 defines software verification and validation, two terms that are used extensively
in the rest of the text. Section 4 describes the way DMSD development processes should be applied
in Agile projects. Section 5 discusses the subject of Release Management, while Section 6 deals with
the topic of Software Configuration Management.
The second part of this document describes the DMSD software development processes in detail. The
description is organized around requests, workflows, roles and artifacts. When a request to do
something (fix a bug, implement a new feature, etc.) is submitted to a DMSD development group, its
associated workflow is triggered. During the execution of a workflow, the process moves through
several defined states. Explicit actions have been defined for each state, which need to be completed
by a designated person that assumes a role (some role assignments are static, e.g. Project Scientist;
while in other cases the assignee changes depending of each request, e.g., Reporter). Some of these
actions involve the production of one or more artifacts, which normally need to be reviewed and
accepted for the workflow to move to subsequent states.
The different request types are defined in Section 7, along with the process by which they are
scheduled. Section 8 defines roles. Sections 9 to 13 define the workflows associated with each type of
request. Finally, Section 15 provides templates for development artifacts mentioned in the rest of the
text.

1.5 References
[1] Eduardo Miranda, "Recommendations for Improvement. Evaluation of CASA PMD
Requirements RFP CV-740", 2015.
[2] Erich Schmid, George Kosugi, Jorge Ibsen, Morgan Griffith, "ALMA Software Delivery
Process", COMP-70.05.00.00-0012-D-PLA, 2015.
[3] Jez Humble, David Farley, "Continuous Delivery", ISBN 978-0-321-60191-9, Addison-Wesley,
2011.
[4] Suzanne Robertson, James Robertson, "Mastering the Requirements Process, Third Edition",
ISBN 978-0-321-81574-3, Addison-Wesley, .

1.6 Abbreviations and Acronyms
ALMA Atacama Large Millimeter Array
CASA Common Astronomy Software Applications
DMSD Data Management and Software Division
JIRA Atlassian (https://www.atlassian.com) software for issue and project tracking
NRAO National Radio Astronomy Observatory
SCM Software Configuration Management
SRS Software Requirements Specification

 6

2 CASA PMD Requirements Project Recommendations Traceability
This section documents how the recommendations prescribed as part of the "Evaluation of CASA
PMD Requirements" project [1] have been addressed in this document. Note that this document
attempts to define common software development processes for all DMSD groups, not only the
CASA group or any other specific group. Some recommendations, which are only applicable to
CASA, are not elaborated further. This doesn't mean they won't be implemented, it just means that
they are not in the scope of this document, and should be elaborated and implemented by the CASA
team. Similarly, other recommendations that are not directly related to development processes, but
other organizational and management aspects of DMSD (team co-location, training), are not
discussed further.

1. Implement alternate periods of development and housekeeping.
Implemented, see Section 7.

2. Strengthening the authority of the Project Scientist, Project Manager and System
Architect.
See Section 8, which defines these roles and their respective responsibilities.

3. Establish processes for work request management; work planning and tracking;
configuration management; software development; verification and validation; building,
deployment and releasing of software; quality assurance; and measurement and
analysis.
This document provides guidelines and a framework for work request management, work
planning and tracking, configuration management, and verification and validation. The rest
are group-specific (i.e., recommendations should be evaluated and implemented by each
group).

4. Workload management policy.
All the changes recommended under this item are covered, with the exception of items 7 and
8. Item 7 (reserve one day per week for unplanned tasks) is left to the discretion of each
group. Item 8 (expediting is restricted to the CASA User Committee) is CASA specific.

5. Implement as soon as possible (ASAP) scheduling.
Covered in Section 7.

6. Perform early estimation process.
Integrated in all the workflows. Performing an early estimation is done in the Unscheduled
state. The T-shirt sizing technique is recommended.

7. Maintain Work schedule and Resource availability databases.
This will be implemented in JIRA and Confluence.

8. Improving quality of work requests.
All the proposed request types have been incorporated in this document (some names differ
slightly). All the workflows incorporate an initial tollgate in the Open state, where the quality
of the request is evaluated.

 7

9. Planning and tracking different types of work.
This document specifies specific workflows and templates for each type or request. Note that
no distinction is made between the types of request and types of work. Both are mapped to the
request types defined in this document. Besides this mapping, all of them are covered.

10. Implement requirements traceability.
Not covered in this document. This is left for each group to evaluate and implement.

11. Implement testing framework.
In general, it is covered in the workflows and the adoption of a continuous integration server.
Implementation details are group-specific.

12. Co-location.
Not covered in this document.

13. Create (process) quality assurance role.
See Section 8, which defines this role and its responsibilities.

14. Pay technical debt.
It is recommended that each group adopt housekeeping periods. Details about evaluating the
technical debt and formulate plans to reduce it are left for each group to define.

15. Implement coding guidelines.
For now, this is left for each group to define and implement.

16. Create and maintain the CASA roadmap.
This is CASA specific, although each DMSD group will maintain a medium-term
management plan (see Section 18).

17. Training.
Not covered in this document.

3 Software Testing Verification and Validation
Software and systems engineering makes a distinction between software verification and validation
testing. These terms are not interchangeable. For the purpose of clarity, they are defined below:

• Verification is intended to check that the product, service or system meets a set of design
specifications. In other words, it tries to answer the question: "Are we building it right?"

• Validation is intended to ensure a product, service, or system meets the operational needs of
the user. It addresses the question: "Are we building the right thing?” The validation process
confirms that the user requirements have been well understood and translated into software or
system requirements that have been implemented accordingly.

The acceptance process requires the software to be both verified and validated. Although the
verification process can be performed by the development teams, validation usually requires the
participation of a user representative with domain or scientific expertise.

 8

4 Agile Projects
A development group could decide to apply an Agile development model to a request. This decision
should be discussed and approved beforehand with the relevant stakeholders and DMSD
management. There are several variations of Agile methods, but most Agile process models
emphasize the following aspects:

1. Continuously involving a representative customer or user.
2. Developing test cases before implementing the next version of the product.
3. Implementing and testing the resulting version.
4. Demonstrating each version of the evolving product to the customer.
5. Eliciting the next requirement(s) from the customer.
6. Periodic delivery into the operational environment.

Agile development seems to be best suited to small applications projects that are conducted in the
presence of a knowledgeable customer/user who has a clear understanding of the needs to be satisfied
by the system that is being built. Close interaction with this user, and a high frequency (weekly or
even daily) in the implementation and demonstration of the incremental modifications replace up-
front requirement elicitation. There is usually no explicit design step and no design documentation.
This is compensated for by a design "metaphor" that is shared among developers. A design metaphor
is usually based on an architectural style, or an already existing architecture.
Note that the application of Agile methods has been limited to individual requests, not all the
development activities carried on by a group. Executing a request in an Agile manner will probably
be more suitable for Epics and Research Projects, because of their relative length and need for
frequent interaction with a user representative.
The decision to apply Agile methods in a project should be taken carefully, judging its
appropriateness with respect to the particular conditions of the project. It should be made explicit to
management and stakeholders, and as said before, an available, committed and knowledgeable user
representative should be assigned to the project. Time-boxing (see Section 7) is especially important
for Agile projects, as in general the scope of the task won't be well defined at its initiation. It is
important that an agreement of its duration and allocated resources is made up-front, and the effort
shouldn't extend beyond this period. Continuing work on this project requires the submission of a
new request.

5 Release Management
As far as possible, DMSD development groups will aim to establish a continuous delivery system as
part of their processes. In a continuous delivery system, every change in the software triggers the
execution of a continuous delivery pipeline, which as part of its initial steps compiles, builds and
deploys the software. This new deployment is tested automatically. If problems are found, the
developers responsible for the relevant changes are notified. If no problems are found, a new version
of the software is ready to be validated (or released, if further validation is not necessary).
The goals of such a system are threefold. First, it makes every part of the process of building,
deploying, testing, and releasing software visible to everybody, aiding collaboration. Second, it

 9

improves feedback so that problems are identified, and resolved, as early in the process as possible.
Finally, it enables teams to deploy and release any version of their software to any supported
environment through a fully automated process [3].
In some cases, development groups could decide to expose new product releases to some or all users
as soon as they have been generated by the continuous delivery pipeline. In other cases where this
model is impractical (like when the software needs further integration or validation tests before being
deployed in production servers) only specific releases are made available.
Each development group will maintain a development plan defining the release delivery schedule for
each development cycle. Each release integrates several features, and undergoes an acceptance
process where additional tests are performed before the release is formally accepted. See Sections
15.7 and 15.8 for templates defining the acceptance plan and acceptance report, respectively. The
Acceptance Body (see Section 8.11) is responsible for organizing the acceptance process and writing
these documents. Note that a release won't be deployed permanently in production servers unless it
has been accepted.

6 Software Configuration Management
Software Configuration Management is an umbrella activity that aims to identify, control, audit, and
report modifications that inevitably occur on software products such as programs and associated
engineering artifacts (user documentation, software requirement specifications, architecture definition
documents, etc.) while they are being developed and after they have been released to customers. This
activity includes keeping products under version control, defining a process to manage change
requests, and reporting changes to everybody that should be informed.
This document doesn't define in full detail these processes for all DMSD groups—each group, along
with its stakeholders and DMSD management, should define their required SCM activities, according
to the nature of the software that is being developed, its management structures, delivery strategies
and release plans, communication paths with stakeholders, etc. However, the following
commonalities should be noted:

• DMSD groups have agreed to adopt Git as version control system. This system is perceived
to provide better support for distributed teams, and facilitates activities associated with
parallel development. The specifics about how Git will be used (what branches will be used
for development, test, and production, etc.) should be defined by each group.

• Save for exceptional cases (e.g., changes in hardware or firmware or Operating System), it
should always be possible to revert back to a previous release in operational environments.
Releases should be identified by a unique tag.

• How formal the change control process needs to be depends on each group, but it should be
accommodated as part of the workflows defined in this document. For example, a group
could decide to form a Change Control Board, whose members would be responsible for
approving change requests in the transition between Open and Unscheduled (where the
acceptance of a ticket occurs).

• Internal reporting and coordination activities are left for each group. Cross-group
coordination and external reporting are already defined (DMSD groups hold a bi-weekly
coordination meeting, and submit monthly status reports to the department management).

 10

7 Request Types and Scheduling1
This section describes different types of requests, and provides guidelines for how they should be
scheduled, i.e., how each request should be assigned resources and a period of time to be executed.
By default, requests execution is time-boxed. This is a management technique that prioritizes
schedule over deliverables (for details see [1], Appendix E). During the execution of a task, if it is
anticipated that all requested deliverables will not be ready by the defined completion date, the scope
of the work is reduced so that a smaller, yet still useful output is produced by such date. In other
words, a task is not allowed to extend beyond its estimated completion date, preventing that delays on
this task propagates to other tasks.
Although requests will be by default time-boxed, the group Lead and DMSD management can decide
to adopt a different strategy, in specific cases where time-boxing is perceived as inappropriate. These
decisions should be documented in the Group Management Document (in S
In general, the scheduling policy that is proposed is As Soon As Possible (ASAP), selected to favor
predictability. All work is scheduled to be executed as soon as all resources necessary for its
execution are available, in a first-come-first-served basis. Within this general policy, there are two
exceptions:

• Blocker bugs are investigated as quickly as possible. They can interrupt other previously
scheduled on-going tasks.

• Epics (just a name for relatively big projects, see Section 7.4) are scheduled in advance, and
"block" resources for their estimated duration.

Each development group maintains a development "Master Schedule", a chart that makes the
scheduled tasks visible to all stakeholders. In order to develop the schedule, the effort required by
each request is estimated. It is suggested to perform the initial estimation by means of the "T-shirt"
sizing technique (requests are classified as extra-small (XS), small (S), medium (M), large (L), or
extra-large (XL), see [1], page 18).
Each development group will alternate periods of ASAP development scheduling with periods of
"housekeeping", to reduce the technical debt. These housekeeping periods should be clearly indicated
in the Master Schedule.
The adoption of the ASAP scheduling policy comes mainly from the CASA review. However, it is
recognized that other groups may find the need to implement a different policy. For example, a group
may find that a priority-based scheduling policy is more adequate for the type of requests it receives
and the way they should be processed. In cases where the group Lead and DMSD management
decide to apply a different scheduling policy, the selected policy should be made explicit to all
stakeholders (it is included in the Group Management Document, see Section 18). Nevertheless, it is
expected that each group maintains a Master Schedule.
Note: In several places in this document, a request is referred to as a ticket. In practical terms,
requests will be managed by a commercial issue and project tracking system, JIRA (see Section 16).
In this system, a request is represented by an electronic ticket. A ticket can be considered as the

1 The names for the types of requests and processing units have been modified with respect to the ones suggested in

[1], to avoid name collisions and re-definitions in JIRA. No distinction has been made between request types and
work types, to avoid the introduction of additional names with slightly different semantic, which could result
confusing for users.

 11

specific implementation of an abstract request, which could be implemented by other means if a
different system were to be adopted (email, paper forms, etc.). As this document prescribes an
implementation system for the development processes, the word "ticket" is used when discussing
implementation details about managing requests.

7.1 Bug

7.1.1 Description
This is a request to correct a deviation of the system from its specified behavior. Work on bug
requests follows a sequential process:

1. replicate the problem,
2. understand the problem,
3. localize the code to be repaired, and
4. depending on the problem either:

a. repair the code or
b. produce a workaround and create a new feature or engineering task issue to properly

address the problem later, or
c. determine for whatever reason, a fix of the bug is not needed.

7.1.2 Scheduling
If the Bug is classified as Blocker, its execution is expedited, and may interrupt other previously
scheduled work if necessary. If not, it follows the normal ASAP scheduling, i.e., it may need to wait
until the necessary resources become available after completing previously scheduled tasks.

7.2 Feature

7.2.1 Description
A request to change the current specified behavior. A feature could involve adding functionality to the
system, or not. Although in general a Feature adds functionality, it could also involve implementing
non-functional requirements, like scalability, performance, or maintainability. By definition, these do
not add additional functionality to the system, but improves its properties.

7.2.2 Scheduling
Features follow ASAP scheduling. By definition, Features should have low coordination needs and
low risk exposure. They represent relatively "compact" and small changes, or otherwise they should
be Epics. The decision of when a request should be classified as a Feature or an Epic is left to the
development team, and it may need to be modified as development moves forward. If a Feature
becomes more complicated than initially thought, it may be transformed into an Epic; conversely, an
Epic could become a Feature, if it ends up being simpler than originally estimated. As a guideline, the

 12

development of a Feature shouldn't take more than 1 month2.

7.3 Engineering Task

7.3.1 Description
An internal change request to improve maintainability of the code, perform refactoring activities,
clean up, improve documentation, etc. In general, Engineering Tasks won't have visible outcomes for
end users, but are necessary in order to improve the quality of the system and reduce the accumulated
"technical debt". It is expected that this type of request will be mostly submitted by the group
development team and Architect.

7.3.2 Scheduling
In general, Engineering Tasks will be scheduled to be performed during the group housekeeping
periods.

7.4 Epic3

7.4.1 Description
Larger cross functional work requests that require substantially more coordination than other jobs.
Usually, an Epic ticket will be composed by several sub-tickets, assigned to different developers.
Epics also provide a way to manage cross-group activities. In this case, sub-tickets inside the Epic
will be assigned to different groups. In the case of cross-group activities with a large scope (e.g.,
VLASS), it may be needed to create a special JIRA project, with a designated Lead which will be
responsible for managing and tracking its activities. For all purposes, this project will be managed as
a temporary development group inside DMSD.

7.4.2 Scheduling
Because Epics employ resources with different availabilities, these types of requests needs to plan
ahead, when and for how long, a resource will be needed so they can make themselves available.
Projects will also tend to have a larger exposure to technological and schedule risks which could have
an impact on, otherwise unrelated, projects and jobs through resource dependencies.
The larger efforts that characterize a project imply that the resources working on it will not be
available for other tasks for long periods of time and so the decision to proceed must be made at
higher levels than in the case of other jobs. Epics will be scheduled by the PM in consultation with
the Group Lead and any developers involved. Work on an Epic’s sub-tasks should not begin until the
Epic itself is scheduled
Epic schedules will be time-boxed. If work is behind schedule, the scope of the Epic will be reduced

2 The limit for when a Feature becomes an Epic originated quite a bit of discussion between development groups.

CASA considers the limit to be in 2 weeks. ALMA Control would prefer a longer value of 2 months. The 1-month
guideline has been set as the average between these two values, rounded to entire months.

3 The word "Epic" comes from Scrum, and it is the name adopted by JIRA for this type of request.

 13

in such a way that maximizes the impact of the project without causing a schedule delay.

7.5 Research request

7.5.1 Description
Research requests are submittals for new software capabilities in which either the requester cannot
define in objective terms what is the expected result, or the developers are unsure about whether the
requirement can be implemented within the known capabilities and limitations of the system and its
operating environment.

7.5.2 Scheduling
These requests have two goals: (1) finding what is sought; and (2) learning. In order to mitigate the
risk of these projects to delay other efforts and waste resources if neither of these goals can be
reached, these research projects will be time-boxed. In addition, the risk of wasting resources will be
mitigated by interspersing "tollgates" in the workflow.
Tollgates are pre-established decision points in the life of a project. At each tollgate, the project will
be reviewed from three different perspectives: science, progress and cost. Depending on the results of
this review, a decision is made on whether to continue with the project, abandon it, defer it, or submit
a follow-up request.

8 Roles and Responsibilities

8.1 Reporter
This is the person who creates the ticket, and who has an interest in the activity.
Save for exceptional cases, developers shouldn't create tickets on behalf of somebody else, although
they can create tickets on their own behalf. A ticket needs to be created by the interested party. This is
necessary so the system effectively maps the Reporter role with the particular person that assumed
this role in the context of a ticket, facilitating the execution of processes associated with the request
(e.g., correctly sending questions and notifications to the actual Reporter, and not to the person who
created the ticket).

8.2 Project Scientist
The project scientist is the main interface between the scientific stakeholders and the development
group. His main responsibilities includes: to judge the worthiness of change and research proposals,
to work with users to clarify requests and with developers to explain the goals. The project scientist
must ensure that the criteria for accepting features are specified and the tests that verify those criteria
are later run to determine whether the features have been completed satisfactorily. A key requirement
of this position is availability.

 14

8.3 Group Lead
The Group Lead is responsible for the overall group management.

8.4 Component Lead
Some development groups (noticeable CASA) are big enough to require being subdivided in
components. In this case, the Component Lead is assigned to support the Group Lead on the activities
specific for a component.

8.5 Component Scientist
Some development groups (noticeable CASA) are big enough to require being subdivided in
components. In this case the Component Scientist assumes the responsibly of the Project Scientist, for
the activities pertaining to a component.

8.6 Project Manager
In general the Project Manager is responsible for all the activities related with managing projects,
applying processes, methods, knowledge, skills and experience to achieve the specified objectives.
His specific responsibilities should be discussed and agreed with the Group Lead, and generally will
include to make the initial assignment of requests, enforce the workload management policy,
consolidate all the scheduling, resource calendar and progress information, and serve as center of
excellence in project management and system engineering, assisting other members of the group with
requirement elicitation, estimation, risk management, planning, quality assurance, verification testing,
validation testing, and process definition as needed.

8.7 Software Architect
The main responsibility of the Software Architect is to define, document and oversee the
implementation of the software architecture.
The Architect also performs studies to assess the feasibility of possible technologies and evaluates
their relative advantages and drawbacks. Working with the Test Group, it performs scalability and
performance tests to validate architectural choices.
There are two architecture-related roles: an intra-group Architect that takes care of the above
responsibilities inside a group; and a multi-group Architect, that takes care of architectural concerns
that span more than one group, and evaluates group specific architectures.

8.8 Developer
The Developer is responsible for the development of new functionality, and the maintenance of the
existing code base. The Developer provides early effort estimation, analyzes requirements, designs,
implements and tests changes in the system.

8.9 Test Engineer
The verification of some features may require additional tests that extend the unit tests implemented

 15

by developers. For instance, this is usually required for systems that integrate several components,
developed by different developers and groups. The Test Engineer will analyze requirements and their
implementation, and defines additional tests, addressing integration concerns and qualities such as
scalability, performance, and usability. It ensures that the system being developed is testable, and
advices on testing strategies and frameworks. This role can be assumed by members of DMSD Test
Group, or by designated members of the development group. It can be a part-time job.

8.10 Validator
This is who validates a task and confirms that the implemented changes comply with requirements,
and the requirements faithfully represent the stakeholder's needs (see section 3, "Software Testing
Verification and Validation"). This role will normally be assumed by the Reporter or the Project
Scientist, but it could be assigned to somebody else if appropriate.

8.11 Acceptance Body
This is the nominated person or group who has the responsibility of accepting a release. This role is
assigned by common agreement between DMSD management and the relevant stakeholders. A
release integrates several features together, and delivers them as a package. Note that this role is
different from the Validator, who validates at the task level.
Most of the work can be handled at the task level, with the aid of continuous integration strategies
(see Section 5, "Release Management"). However, it could be necessary to deliver new software in
releases, with formal acceptances. This is typically required when systems are deployed in production
servers, in systems where downtime costs are high, and therefore the new deployment needs to be
carefully tested to prevent integration issues.
A new release should not be deployed in production unless it has been accepted by the Acceptance
Body. Templates for the Acceptance Plan and Acceptance Report can be found in Sections 15.7 and
15.8.

Quality Assurance Role
The responsibility of the quality assurance (QA) role is not to test the software. Its role is to educate
and ensure conformance to the development practices the organization choose for itself. Issues
identified by QA must first be addressed within the group but, if for whatever reason, this is not
possible they should be escalated for resolution. The QA role could be performed by a dedicated
resource, by rotating the role among developers or by assigning it to the Project Manager.

8.12 Expert
At several points in the workflows, it could be necessary to complete missing information, clarify
details, and in general request information to the most appropriate or knowledgeable person. This is
the Expert. Depending on the type of requested information, this role can be assumed by the Project
Scientist, the Reporter, the Software Architect, or any other person who is capable of providing the
required information. Note that this is not a static role in the workflows, but varies depending on the
type of information that is being requested. For questions pertaining to the science requirements, this
role is typically assumed by the Project Scientist.

 16

9 Bug Workflow
The workflow for Bug requests is presented in Figure 1.

9.1 State: Open

9.1.1 Purpose
This is the initial state after a new ticket is created by Reporter. The main activity that needs to be
performed while in this state is to review that there is enough supporting information for the bug to
be processed in the next steps.

9.1.2 Responsible Role
Group Lead or Component Lead.

9.1.3 Inputs
It is expected that Reporter, who creates the ticket, has provided the following inputs:

• Bug description, including environment, release affected, etc.

• Bug priority.

• Test description, documenting how the problem can be reproduced.

Figure 1: Bug workflow.

 17

9.1.4 Outputs

• Revised bug priority.

• Accepted or rejected decision, with accompanying explanatory comment.

9.1.5 Transitions

• To Input Required, if additional information is required. The ticket is assigned to the most
appropriate person to provide an answer, the Expert.

• To Unscheduled, if the Bug is accepted.

• To Closed, if after analyzing the problem, it is decided that no work needs to be scheduled.
For example, in case the issue reported is not actually a problem, or if it is duplicated.

9.1.6 Tollgates

• Completeness of bug description and test procedure. These artifacts need to be provided in
sufficient detail for the bug to be investigated. If this information is not provided within a
reasonable time (guideline: 1 month), the ticket is closed.

9.2 State: Unscheduled

9.2.1 Purpose
This state indicates that the ticket has been accepted, but hasn't been scheduled yet. In Agile
methodologies, the collection of tickets in this state is referred as the "backlog". The main operation
to be performed in this state is for Developer to estimate the effort and schedule the task.

9.2.2 Responsible Role
Developer.

9.2.3 Inputs
None. The information necessary to proceed with the effort estimation and scheduling should have
been already provided.

9.2.4 Outputs

• Effort estimation. The T-shirt technique is recommended as a way to come up with an initial
rough estimation.

• Schedule, specifying a start and end date.

9.2.5 Transitions

• To Closed, if Developer finds out that no work is actually needed.

• To Scheduled, when a start and end date has been assigned for the ticket.

 18

• To Input Required, if Developer finds that additional information or clarifications are needed
in order to estimate the effort.

9.2.6 Tollgates
None.

9.3 State: Input Required

9.3.1 Purpose
This state is used to indicate that the ticket requires additional information.

9.3.2 Responsible Role
Expert.

9.3.3 Inputs

• A clear statement specifying what information is required, and why it's necessary to continue
with the process. In addition, it is also recommended to specify a deadline for when the
information should be provided.

9.3.4 Outputs

• The required information.

9.3.5 Transitions

• Back to Open, after providing the requested information.

• Back to Unscheduled, after providing the requested information.

• Back to Scheduled, after providing the requested information.

9.3.6 Tollgates

• The requested information needs to be provided in a reasonable time (guideline: 1 month),
taking into account that most of the requests will be time-boxed. If the information cannot be
provided, the ticket may need to be un-scheduled or closed.

9.4 State: Scheduled

9.4.1 Purpose
This is the state where the bug is investigated, reproduced, fixed and tested. User documentation
should be updated, when needed.

 19

9.4.2 Responsible Role
Developer.

9.4.3 Inputs

• Bug documentation, which should have been already analyzed and clarified while in the Open
state.

• Test description, specifying how the bug can be reproduced.

9.4.4 Outputs

• Bug fixes.

• A note documenting what was the problem, and summarizing the implemented solution.

• If the solution provides a workaround, but doesn't address the root cause of the problem, it
may be necessary to submit additional tickets. These should be referenced in the current
ticket.

9.4.5 Transitions

• To Input Required, if during the implementation the developer finds out that additional
information is required. The ticket is assigned to Expert.

• To Ready to Verify, if the bug requires to be verified in integration. In this case, the feature is
assigned to Test Engineer.

• To Ready to Validate, once the bug has been fixed and tested, and has been merged into the
proper branch. The ticket is assigned to Validator.

• To Unscheduled, if the investigation needs to be stopped (because of the submission of a
Blocker bug, for example), or if the time box allocated for this task has expired. This
transition is also necessary to deal with process errors (i.e., the ticket was moved to Scheduled
by mistake).

• To Resolved, if the bug is simple enough (correct a typo in a GUI label, for example) that
doesn't require the participation of a specialized Validator. This is a concession for the fact
that development and science groups have scarce resources, which shouldn't be wasted
unnecessarily.

9.4.6 Tollgates
None

9.5 State: Ready to Verify

9.5.1 Purpose
This is an optional state, for bugs that require additional verification tests besides the ones executed

 20

by Developer while in the Scheduled state. During the Ready to Verify state, the problem is analyzed
and additional tests are specified.
This may be necessary for several reasons:

• The verification of some bugs may require to be executed against telescope hardware, while
Developer may use hardware simulators instead. In this case, the fix will need to be tested
against real hardware to complete the verification.

• Some bugs may require to be executed in an integration setup, while Developer may use
mockups to replace components that are outside his area of responsibility. One example of
this is the use of databases, or other shared distributed services that are impractical to be
maintained by each developer.

• The fix for a bug may break other functionality. An automatic test suite running in a
continuous integration server may detect these problems, if the system has sufficient test
coverage. If not, additional tests may be necessary.

This separate verification step allows for specialized Test Engineers (which can be part of the
development group, or a separate, DMSD-wide group) to analyze requirements and ensure that the
feature has been sufficiently tested, addressing concerns that may not have been taken into
consideration during development, such as scalability, usability, etc.

9.5.2 Responsible Role
Test Engineer.

9.5.3 Inputs

• Bug description.

• Bug test description, documenting how the problem can be reproduced.

9.5.4 Outputs

• Additional test specifications.

9.5.5 Transitions

• To Under Verification, once the resources necessary to perform the additional test activities
are available.

9.5.6 Tollgates
None

9.6 State: Under Verification

9.6.1 Purpose
Execute and report the results of additional verification tests.

 21

9.6.2 Responsible Role
Test Engineer.

9.6.3 Inputs

• Additional test specifications.

9.6.4 Outputs

• Test reports.

9.6.5 Transitions

• To Scheduled, if a problem has been found in the tests, which require the attention of
Developer. The ticket is assigned to Developer.

• To Ready to Validate, if tests have passed satisfactorily, and the bug is ready to be validated.

9.6.6 Tollgates
None

9.7 State: Ready to Validate

9.7.1 Purpose
This is a waiting state, where the bug is ready to be tested by Validator (usually the Reporter himself).

9.7.2 Responsible Role
Validator.

9.7.3 Inputs

• Test procedure, provided when the bug ticket was created.

9.7.4 Outputs

• Validation Report.

9.7.5 Transitions

• To Under Validation, when Validator is ready to start the validation tests.

• Back to Scheduled, if Validator decides that the ticket is not ready yet for validation. In this
case, he should annotate explicitly what is missing. This transition is also provided to account
for process errors.

 22

9.7.6 Tollgates
None.

9.8 State: Under Validation

9.8.1 Purpose
The purpose of this state is to perform the validation tests, validating that the bug has been effectively
fixed.

9.8.2 Responsible Role
Validator.

9.8.3 Inputs

• Test procedure, provided when the bug ticket was created.

9.8.4 Outputs

• Test Report, documenting the results of the tests executed.

9.8.5 Transitions

• To Resolved, if the validation tests demonstrate that the bug has been fixed. The ticket is
assigned to Developer.

• Back to Scheduled, if tests show that the problem hasn't been fixed, and the ticket requires
additional work by Developer. The ticket is assigned to Developer.

9.8.6 Tollgates
None

9.9 State: Resolved

9.9.1 Purpose
In the Resolved state, the Developer performs post-development activities, such as merging to the
final branch, etc. This is also the state where reviews and quality control can be introduced.

9.9.2 Responsible Role
Developer.

9.9.3 Inputs
None.

 23

9.9.4 Outputs
None.

9.9.5 Transitions

• To Completed, once post-development activities have been completed.

• To Scheduled, to allow for errors, i.e., the ticket was moved to Resolved before it was ready.

9.9.6 Tollgates
None.

9.10 State: Completed

9.10.1 Purpose
The ticket is in the Complete state until it has been delivered. In general, all remaining activities
necessary to finalize the activity should be performed while in this state. This could involve the
creation of a release branch, the deployment in production, etc.

9.10.2 Responsible Role
Developer.

9.10.3 Inputs
None.

9.10.4 Outputs

• Associated artifacts necessary to finalize the activity, such as documentation updates,
configuration artifacts, etc.

9.10.5 Transitions

• To Closed, once the bug has been delivered.

9.11 State: Closed

9.11.1 Purpose
This is the final state. No more work can be done in the context of this ticket. If additional work is
required, a new ticket should be created.

9.11.2 Transitions

• To Open, to allow for errors, i.e., the ticket was closed before it was ready. This transition

 24

may be used by project administrators only.

10 Feature Workflow
The workflow for Features is presented in Figure 2. The Feature Workflow is very similar to the Bug
Workflow. The main difference is in the artifacts required by each step.

10.1 State: Open

10.1.1 Purpose
This is the initial state after a new ticket is created by Reporter. The main activity that needs to be
performed while in this state is to review that the supporting information is complete enough to
proceed with the next steps.

10.1.2 Responsible Role
Group Lead or Component Lead.

10.1.3 Inputs
It is expected that Reporter, who creates the ticket, has provided the following artifacts:

Figure 2: Feature workflow.

 25

• Software Requirements Specification.

• Validation Plan.

10.1.4 Outputs

• Accepted or rejected decision, with accompanying explanatory comment.

10.1.5 Transitions

• To Input Required, if additional information is required. The ticket is assigned to the most
appropriate person to provide an answer, the Expert.

• To Unscheduled, if the Feature is accepted.

• To Closed, if after reviewing the requested Feature, it is decided that the ticket should be
rejected. This transition is accompanied by an explanatory comment. A Closed ticket can be
re-opened if, upon a request from Reporter, it is decided to revisit this decision.

10.1.6 Tollgates

• Completeness of Software Requirements Specification and Validation Plan. These
artifacts need to be provided in sufficient detail for the Feature to be implemented. If this
information is not provided within a reasonable time, the ticket is closed.

Note that a change request for which it is not possible to define a Software Requirements
Specification and Validation Plan cannot be submitted as a Feature. It can be submitted as a Research
Project, on the other hand.

10.2 State: Unscheduled

10.2.1 Purpose
This state indicates that the ticket has been accepted, but hasn't been scheduled yet. In Agile
methodologies, the collection of tickets in this state is referred as the "backlog". The main operation
necessary in this state is for Developer to perform the effort estimation and schedule the task.

10.2.2 Responsible Role
Developer.

10.2.3 Inputs

• Software Requirements Specification, provided when the ticket was created.

• Validation Plan, provided when the ticket was created.

10.2.4 Outputs

• Effort estimation. The T-shirt technique can be used for the purpose of an early, rough

 26

estimation.

• Schedule, specifying a start and end date.

10.2.5 Transitions

• To Closed, if Developer finds out that no work is actually needed. For example, he/she could
find that the request is not feasible, or that the ticket is duplicated.

• To Scheduled, when a start and end date has been assigned for the ticket.

• To Input Required, if Developer finds that additional information or clarifications are needed
in order to estimate the effort.

10.2.6 Tollgates
None

10.3 State: Input Required

10.3.1 Purpose
This state is used to indicate that the ticket requires additional information.

10.3.2 Responsible Role
Expert.

10.3.3 Inputs

• A clear statement specifying what information is required, and why it is necessary to continue
with the process.

10.3.4 Outputs

• The missing information.

10.3.5 Transitions

• Back to Open, after providing the requested information.

• Back to Unscheduled, after providing the requested information.

• Back to Scheduled, after providing the requested information.

10.3.6 Tollgates

• The requested information needs to be provided in reasonable time, taking into account that
most of the requests will be time-boxed. If the information cannot be provided, the ticket may
need to be un-scheduled or closed.

 27

10.4 State: Scheduled

10.4.1 Purpose
This is the state where the Feature is implemented, documented, and tested.

10.4.2 Responsible Role
Developer.

10.4.3 Inputs

• Software Requirements Specification, provided when the ticket was created.

• Validation Plan, provided when the ticket was created.

10.4.4 Outputs

• Feature Implementation.

• Unit Tests.

• Additional implementation details (documented as comments).

• User documentation

10.4.5 Transitions

• To Input Required, if during the implementation the developer finds out that additional
information is required. The ticket is assigned to Expert.

• To Ready to Verify, if the Feature requires to be verified in integration. In this case, the
feature is assigned to Test Engineer.

• To Ready to Validate, when the Feature has been implemented and tested, and has been
merged into the proper branch for testing. The ticket is assigned to Validator.

• To Unscheduled, if the investigation needs to be stopped (because of the submission of a
Blocker bug, for example), or if the time box allocated for this task has expired. This
transition is also necessary to deal with process errors (i.e., the ticket was moved to Scheduled
by mistake).

• To Resolved, if the Feature is simple enough (change a GUI label, for example) that doesn't
require the participation of a specialized Validator. This is a concession for the fact that
development and science groups have scarce resources, which shouldn't be waisted
unnecessarily.

10.4.6 Tollgates
Note

 28

10.5 State: Ready to Verify

10.5.1 Purpose
This is an optional state, for Features that require additional verification tests besides the ones
executed by Developer while in the Scheduled state. During the Ready to Verify state, the problem is
analyzed by Test Engineer and additional tests are specified.
See Section 9.5 for additional details about this state.

10.5.2 Responsible Role
Test Engineer.

10.5.3 Inputs

• Software Requirements Specification, provided when the ticket was created.

• Validation Plan, provided when the ticket was created.

• Additional implementation information (the code itself, unit tests, implementation comments).

10.5.4 Outputs

• Additional Test Plans.

10.5.5 Transitions

• To Under Verification, once the additional Test Plans have been specified, and the resources
necessary to perform the additional test activities are available.

10.5.6 Tollgates
None.

10.6 State: Under Verification

10.6.1 Purpose
Execute verification tests and report their results.

10.6.2 Responsible Role
Test Engineer.

10.6.3 Inputs

• Additional test specifications.

 29

10.6.4 Outputs

• Test Reports (see Section 15.4)

10.6.5 Transitions

• To Scheduled, if a problem has been found in the verification tests, which require the
attention of Developer. The ticket is assigned to Developer.

• To Ready to Validate, if tests have passed satisfactorily and the bug is ready to be validated.

10.6.6 Tollgates
None

10.7 State: Ready to Validate

10.7.1 Purpose
This is a waiting state, where the feature is ready to be tested by Validator (usually the Reporter
himself).

10.7.2 Responsible Role
Validator.

10.7.3 Inputs

• Validation Plan, provided when the bug ticket was created.

10.7.4 Outputs

• None.

10.7.5 Transitions

• To Under Validation, when Validator is ready to start the validation tests.

• Back to Scheduled, if Validator decides that the ticket is not ready yet for validation. In this
case, he should annotate explicitly what is missing. This transition is also provided to account
for process errors.

10.7.6 Tollgates
None.

 30

10.8 State: Under Validation

10.8.1 Purpose
The purpose of this state is to perform the validation tests, checking that the Feature complies with
the specified requirements.

10.8.2 Responsible Role
Validator.

10.8.3 Inputs

• Validation Plan, provided when the bug ticket was created.

10.8.4 Outputs

• Validation Report, documenting the results of the validation tests that were executed.

10.8.5 Transitions

• To Resolved, if the validation tests demonstrate that Feature complies with the specified
requirements. The ticket is assigned to Developer.

• Back to Scheduled, if tests show that the Feature as implemented doesn't comply with the
specified requirements, and the ticket requires additional work. The problem needs to be
clearly specified with a comment and the ticket assigned back to Developer. Developer needs
to evaluate if the reported problem exposes an implementation problem —in which case it
should just be corrected—, or imposes a significant change or extension of the original
requirements. In this case, the original effort estimation is invalid, so the ticket should be
moved to Unscheduled, and the workflow is interrupted.

10.8.6 Tollgates
None.

10.9 State: Resolved

10.9.1 Purpose
In the Resolved state, the Developer performs post-development activities, such as merging to the
final branch, etc. This is also the state where reviews and quality control can be introduced.

10.9.2 Responsible Role
Developer.

 31

10.9.3 Inputs
None.

10.9.4 Outputs
None.

10.9.5 Transitions

• To Completed, once post-development activities have been completed.

• To Scheduled, to allow for errors, i.e., the ticket was moved to Resolved before it was ready.

10.9.6 Tollgates
None.

10.10 State: Completed

10.10.1Purpose
The ticket is in the Complete state until it has been delivered. In general, all remaining activities
necessary to finalize the activity should be performed while in this state. This could involve the
creation of a release branch, the deployment in production, documentation updates, etc.

10.10.2Responsible Role
Developer.

10.10.3Inputs
None.

10.10.4Outputs

• Associated artifacts necessary to finalize the activity, such as documentation updates,
configuration artifacts, etc.

10.10.5Transitions

• To Closed, once the Feature has been delivered.

10.10.6Tollgates
None.

 32

10.11 State: Closed

10.11.1Purpose
This is the final state. No more work can be done in the context of this ticket. If additional work is
required, a new ticket should be created.

10.11.2Transitions

• To Open, to allow for errors, i.e., the ticket was closed before it was ready. This transition
may be used by project administrators only.

11 Engineering Task Workflow
The Engineering Task workflow is presented in Figure 3. The main difference with the Bug and
Feature workflows is the absence of validation steps.

11.1 State: Open

11.1.1 Purpose
This is the initial state after a new ticket is created by Reporter. The main activity that needs to be
performed while in this state is to review that there is enough supporting information for the request
to proceed with the next steps.

Figure 3: Engineering Task Workflow

 33

11.1.2 Responsible Role
Group Lead or Component Lead.

11.1.3 Inputs
It is expected that Reporter, who creates the ticket, has provided the following inputs:

• Software Requirement Specification.

• Test Plan.

11.1.4 Outputs

• Accepted or rejected decision, with accompanying explanatory comment.

11.1.5 Transitions

• To Input Required, if additional information is required. The ticket is assigned to the most
appropriate person to provide an answer, the Expert.

• To Unscheduled, if the Engineering Task is accepted.

• To Closed, if after analyzing the request, it is decided that no work needs to be scheduled. For
example, the request could be duplicated.

11.1.6 Tollgates
None.

11.2 State: Unscheduled

11.2.1 Purpose
This state indicates that the ticket has been accepted, but hasn't been scheduled yet. In Agile
methodologies, the collection of tickets in this state is referred as the "backlog". The main operation
necessary in this state is for Developer to perform the effort estimation and schedule the task.

11.2.2 Responsible Role
Developer.

11.2.3 Inputs
None. The information necessary to proceed with the effort estimation and scheduling should have
been already provided.

11.2.4 Outputs

• Effort estimation. The T-shirt technique can be used for the purpose of an early estimation.

 34

• Schedule, specifying a start and end date.

11.2.5 Transitions

• To Closed, if Developer finds out that no work is actually needed.

• To Scheduled, when a start and end date has been assigned for the ticket.

• To Input Required, if Developer finds that additional information or clarifications are needed
in order to estimate the effort.

11.2.6 Tollgates
None.

11.3 State: Input Required

11.3.1 Purpose
This state is used to indicate that the ticket requires additional information.

11.3.2 Responsible Role
Expert.

11.3.3 Inputs

• A clear statement specifying what information is required, and why it's necessary to continue
with the process.

11.3.4 Outputs

• The missing information.

11.3.5 Transitions

• Back to Open, after providing the requested information.

• Back to Unscheduled, after providing the requested information.

• Back to Scheduled, after providing the requested information.

11.3.6 Tollgates
None.

 35

11.4 State: Scheduled

11.4.1 Purpose
This is the state where the Engineering Task is performed.

11.4.2 Responsible Role
Developer.

11.4.3 Inputs

• Software Requirements Specification.

• Test Plan.

11.4.4 Outputs

• Implementation, which depends on the type of task.

11.4.5 Transitions

• To Input Required, if during the implementation the developer finds out that additional
information is required. The ticket is assigned to Expert.

• To Ready to Verify, if the Engineering Task requires to be verified in integration. In this case,
the feature is assigned to Test Engineer.

• To Unscheduled, if the task needs to be stopped (because of the submission of a Blocker bug,
for example), or if the time box allocated for this task has expired. This transition is also
necessary to deal with process errors (i.e., the ticket was moved to Scheduled by mistake).

• To Resolved, if the Engineering Task doesn't require additional integration verification tests,
besides the unit tests performed by Developer.

11.4.6 Tollgates
None.

11.5 State: Ready to Verify

11.5.1 Purpose
This is an optional state, for bugs that require additional verification tests besides the ones executed
by Developer while in the Scheduled state. During the Ready to Verify state, the problem is analyzed
and additional tests are specified.
See Section 9.5 for additional details about this state.

 36

11.5.2 Responsible Role
Test Engineer.

11.5.3 Inputs

• Software Requirements Specification.

• Test Plan.

11.5.4 Outputs

• Additional test specifications.

11.5.5 Transitions

• To Under Verification, once the resources necessary to perform the additional test activities
are available.

11.5.6 Tollgates
None.

11.6 State: Under Verification

11.6.1 Purpose
Execute and report the results of additional verification tests.

11.6.2 Responsible Role
Test Engineer.

11.6.3 Inputs

• Additional test specifications.

11.6.4 Outputs

• Test reports.

11.6.5 Transitions

• To Scheduled, if a problem has been found in the tests, which require the attention of
Developer. The ticket is assigned to Developer.

• To Resolved, if test results are satisfactory.

 37

11.6.6 Tollgates
None.

11.7 State: Resolved

11.7.1 Purpose
In the Resolved state, the Developer performs post-development activities, such as merging to the
final branch, etc. This is also the state where reviews and quality control can be introduced.

11.7.2 Responsible Role
Developer.

11.7.3 Inputs
None.

11.7.4 Outputs
None.

11.7.5 Transitions

• To Completed, once post-development activities have been completed.

• To Scheduled, to allow for errors, i.e., the ticket was moved to Resolved before it was ready.

11.7.6 Tollgates
None.

11.8 State: Completed

11.8.1 Purpose
The ticket is in the Complete state until it has been delivered. In general, all remaining activities
necessary to finalize the activity should be performed while in this state. This could involve the
creation of a release branch, the deployment in production, documentation updates, etc.

11.8.2 Responsible Role
Developer.

11.8.3 Inputs
None.

 38

11.8.4 Outputs

• Associated artifacts necessary to finalize the activity, such as documentation updates,
configuration artifacts, etc.

11.8.5 Transitions

• To Closed, once the bug has been delivered.

11.8.6 Tollgates
None.

11.9 State: Closed

11.9.1 Purpose
This is the final state. No more work can be done in the context of this ticket. If additional work is
required, a new ticket should be created.

11.9.2 Transitions

• To Open, to allow for errors, i.e., the ticket was closed before it was ready. This transition
may be used by project administrators only.

12 Epic Workflow
The Epic Workflow is presented in Figure 4. Epics represent significant development activities,
typically broken down in sub-features. An Epic parent ticket represents the whole effort, while child
tickets are created for each sub-feature. The workflow described in this section relate to the Epic,
while sub-features follow the Feature Workflow.

 39

12.1 State: Open

12.1.1 Purpose
This is the initial state after a new ticket is created by Reporter. The main activity that needs to be
performed while in this state is to review that there is enough supporting information for the Epic to
be processed in the next steps.

12.1.2 Responsible Role
Group Lead or Component Lead.

12.1.3 Inputs
It is expected that Reporter, who creates the ticket, has provided the following inputs:

• Software Requirements Specification, for each sub-feature.

• Validation Plan, for each sub-feature.

12.1.4 Outputs

• Accepted or rejected decision, with accompanying explanatory comment.

Figure 4: Epic Workflow.

 40

12.1.5 Transitions

• To Input Required, if additional information is required. The ticket is assigned to the most
appropriate person to provide an answer, the Expert.

• To Unscheduled, if the Epic is accepted.

• To Closed, if it has been decided to reject the Epic.

12.1.6 Tollgates

• Completeness of each Sub-feature Software Requirements Specification and Validation
Plan. These artifacts need to be provided in sufficient detail for the Epic to be performed. If
this information is not provided within a reasonable time (1 month can be used as guideline),
the ticket is closed.

12.2 State: Unscheduled

12.2.1 Purpose
This state indicates that the ticket has been accepted, but hasn't been scheduled yet. In order for the
Epic to be scheduled, the effort estimation for each sub-features should be performed. Once this is
done, the Group Lead reviews the sub-feature estimations and schedules the Epic.

12.2.2 Responsible Role
Project Manager.

12.2.3 Inputs

• Effort estimations for each one of the sub-features in the Epic.

• Sub-feature dependency analysis.

12.2.4 Outputs

• Project Plan.

• Epic Schedule, specifying a start and end date.

• Sub-feature assignment and schedules.

12.2.5 Transitions

• To Closed, if it is decided that the Epic will not be executed.

• To Scheduled, when a start and end date has been assigned to the Epic.

• To Input Required, if Group Lead finds that additional information or clarifications is
needed in order to schedule the Epic.

 41

12.2.6 Tollgates
None.

12.3 State: Input Required

12.3.1 Purpose
This state is used to indicate that the ticket requires additional information.

12.3.2 Responsible Role
Expert.

12.3.3 Inputs

• A clear statement specifying what information is required, and why it's necessary to continue
with the process.

12.3.4 Outputs

• The missing information.

12.3.5 Transitions

• Back to Open, after providing the requested information.

• Back to Unscheduled, after providing the requested information.

• Back to Scheduled, after providing the requested information.

12.3.6 Tollgates
None.

12.4 State: Scheduled

12.4.1 Purpose
This is the state where the Epic work is carried on. Development is performed in each one of the sub-
features. The main activity for the Epic, on the other hand, is monitoring and reporting on the whole
effort, as necessary.

12.4.2 Responsible Role
Project Manager.

 42

12.4.3 Inputs

• Progress reports for each sub-feature.

12.4.4 Outputs

• Epic progress report.
The format of this artifact is left at the discretion of the Group Lead. The Group Lead should agree on
the format and frequency of reporting with upper management and other stakeholders. One possible
(brief) format for this type of report, used so far in DMSD, are itemized lists for "Progress", "Next
Tasks", and "Issues".

12.4.5 Transitions

• To Input Required, if during the implementation the developer finds out that additional
information is required. The ticket is assigned to Expert.

• To Ready to Verify, if the Epic requires to be verified in integration. In this case, the Epic is
assigned to Test Engineer.

• To Ready to Validate, once all sub-features in the Epic has been implemented and tested, and
have been merged into a Test branch. The ticket is assigned to Validator.

• To Unscheduled, if the Epic needs to be stopped (because of the submission of a Blocker
bug, for example), or if the time box allocated for this task has expired. This transition is also
necessary to deal with process errors (i.e., the ticket was moved to Scheduled by mistake).

• To Resolved, if the Epic sub-tasks are simple enough that don't require the participation of a
specialized Validator.

12.4.6 Tollgates
None.

12.5 State: Ready to Verify

12.5.1 Purpose
This is an optional state, for Epics that require additional verification tests besides the ones executed
by Developer while in the Scheduled state. During the Ready to Verify state, the problem is analyzed
and additional tests are specified.
See Section 9.5 for additional details about this state.

12.5.2 Responsible Role
Test Engineer.

 43

12.5.3 Inputs

• Sub-feature information.

12.5.4 Outputs

• Additional test specifications.

12.5.5 Transitions

• To Under Verification, once the resources necessary to perform the additional test activities
are available.

12.5.6 Tollgates
None.

12.6 State: Under Verification

12.6.1 Purpose
Execute and report the results of additional verification tests.

12.6.2 Responsible Role
Test Engineer.

12.6.3 Inputs

• Additional test specifications.

12.6.4 Outputs

• Test reports.

12.6.5 Transitions

• To Scheduled, if a problem has been found in the tests. In this case specific sub-features are
assigned to the corresponding Developer, and the Epic is assigned to the Group Lead.

• To Ready to Validate, if tests have passed satisfactorily, and the Epic is ready to be validated.

12.6.6 Tollgates
None.

 44

12.7 State: Ready to Validate

12.7.1 Purpose
This is a waiting state, where the bug is ready to be tested by Validator (usually the Reporter himself).

12.7.2 Responsible Role
Validator.

12.7.3 Inputs

• Test procedure, provided when the bug ticket was created.

12.7.4 Outputs

• Validation Report.

12.7.5 Transitions

• To Under Validation, when Validator is ready to start the validation tests.

• Back to Scheduled, if Validator decides that the ticket is not ready yet for validation. In this
case, he should annotate explicitly what is missing. This transition is also provided to account
for process errors.

12.7.6 Tollgates
None.

12.8 State: Under Validation

12.8.1 Purpose
The purpose of this state is to perform the validation tests, validating that the Epic sub-features
comply with their specified requirements.

12.8.2 Responsible Role
Validator.

12.8.3 Inputs

• Validation Plans, for each sub-feature.

12.8.4 Outputs

• Validation Reports, for each sub-feature.

 45

12.8.5 Transitions

• To Resolved, if the validation tests demonstrate that the Epic sub-features comply with their
specified requirements. The Epic ticket is assigned to the Project Manager, to coordinate any
additional required work.

• Back to Scheduled, if tests demonstrate problems in the implementation. Sub-features are
assigned back to the corresponding developer. The Epic ticket is assigned to the Project
Manager.

12.8.6 Tollgates
None.

12.9 State: Resolved

12.9.1 Purpose
In the Resolved state, the Project Manager coordinates any required post-development work in the
sub-features, like merging to the final branch, etc. This is also the state where reviews and quality
control can be introduced.

12.9.2 Responsible Role
Project Manager.

12.9.3 Inputs
None.

12.9.4 Outputs
None.

12.9.5 Transitions

• To Completed, once post-development activities have been completed.

• To Scheduled, to allow for errors, i.e., the ticket was moved to Resolved before it was ready.

12.9.6 Tollgates
None.

12.10 State: Completed

12.10.1Purpose
The ticket is in the Complete state until it has been delivered. In general, all remaining activities

 46

necessary to finalize the activity should be performed while in this state. This could involve the
creation of a release branch, the deployment in production, documentation updates, etc.

12.10.2Responsible Role
Project Manager.

12.10.3Inputs
None.

12.10.4Outputs

• Associated artifacts necessary to finalize the activity, such as documentation updates,
configuration artifacts, etc.

12.10.5Transitions

• To Closed, once the Epic has been delivered.

12.10.6Tollgates
None.

12.11 State: Closed

12.11.1Purpose
This is the final state. No more work can be done in the context of this ticket. If additional work is
required, a new ticket should be created.

12.11.2Transitions

• To Open, to allow for errors, i.e., the ticket was closed before it was ready. This transition
may be used by project administrators only.

13 Research Project Workflow
The Research Project workflow is presented in Figure 5.

 47

13.1 State: Open

13.1.1 Purpose
This is the initial state after a new Research Project is created by Reporter. The main activity that
needs to be performed while in this state is to review the goals of the project, and accept or reject the
request.

13.1.2 Responsible Role
Group Lead or Component Lead.

13.1.3 Inputs
It is expected that Reporter, who creates the ticket, has provided the following inputs:

• Research Project Goals.

• Agreement with the requester of the project to actively be part of the team.

• Any additional supporting information.

13.1.4 Outputs

• Accepted or rejected decision, with accompanying explanatory comment.

13.1.5 Transitions

• To Input Required, if additional information is required. The ticket is assigned to the most
appropriate person to provide an answer, the Expert.

Figure 5: Research Project workflow.

 48

• To Unscheduled, if the Research Project is accepted.

• To Closed, if the Research Project is rejected.

13.1.6 Tollgates

• Sufficiency of stated goals and supporting information. The Group Lead evaluates if the
specified goals and additional information are sufficient to initiate the Research Project.

13.2 State: Unscheduled

13.2.1 Purpose
This state indicates that the ticket has been accepted, but hasn't been scheduled yet. In Agile
methodologies, the collection of tickets in this state is referred as the "backlog". The main operation
necessary in this state is for Developer to perform the effort estimation and schedule the task.
Note that in the case of Research Project, it may not be possible to perform a very meaningful effort
estimation. The ticket is time-boxed, allocating an amount of time judged as reasonable for the stated
goals.

13.2.2 Responsible Role
Developer.

13.2.3 Inputs

• Research Project Goals.

• Additional supporting information and references.

13.2.4 Outputs

• Effort estimation.

• Schedule, specifying a start and end date.

13.2.5 Transitions

• To Closed, if Developer finds out that no work is actually needed.

• To Scheduled, when a start and end date has been assigned for the ticket.

• To Input Required, if Developer finds that additional information or clarifications are needed
in order to estimate the effort.

13.2.6 Tollgates
None.

 49

13.3 State: Input Required

13.3.1 Purpose
This state is used to indicate that the ticket requires additional information.

13.3.2 Responsible Role
Expert.

13.3.3 Inputs

• A clear statement specifying what information is required, and why it's necessary to continue
with the process.

13.3.4 Outputs

• The missing information.

13.3.5 Transitions

• Back to Open, after providing the requested information.

• Back to Unscheduled, after providing the requested information.

• Back to Scheduled, after providing the requested information.

13.3.6 Tollgates
None.

13.4 State: Scheduled

13.4.1 Purpose
This is the state where the Research Project is executed.

13.4.2 Responsible Role
Developer.

13.4.3 Inputs

• None.

13.4.4 Outputs

• A report, documenting the work performed, and what was found.

 50

13.4.5 Transitions

• To Input Required, if during the implementation the developer finds out that additional
information is required. The ticket is assigned to Expert.

• To Unscheduled, if the Research Project needs to be stopped (because of the submission of a
Blocker bug, for example). This transition is also necessary to deal with process errors (i.e.,
the ticket was moved to Scheduled by mistake).

• To Resolved, once the Research Project has been completed or the associated time-box for it
has expired.

13.4.6 Tollgates
None.

13.5 State: Resolved

13.5.1 Purpose
In the Resolved state, the report is reviewed by Reporter and interested parties.

13.5.2 Responsible Role
Reporter.

13.5.3 Inputs

• Research Project report.

13.5.4 Outputs

• Feedback about the Research Project report, specifying if any additional work is needed.

13.5.5 Transitions

• To Closed, if the time allocated in the time-box has already been used, or if Reported judges
that the goals of the Research Project have been accomplished.

• Back to Scheduled, if additional work is needed, and there is time available in the time-
box. This transition is also provided to correct errors, i.e., the ticket was moved to Resolved
before it was ready.

13.5.6 Tollgates
None.

 51

13.6 State: Closed

13.6.1 Purpose
This is the final state. No more work can be done in the context of this ticket. If additional work is
required, a new ticket should be created.

13.6.2 Transitions

• To Open, to allow for errors, i.e., the ticket was closed before it was ready.

14 Notifications
One aspect about the implementation of the workflows that is worthwhile to define is the manner in
which the participant roles get notified of ticket changes and transitions. Figure 6 presents a possible
notification scheme, discussed with CASA and the SSA teams. Note that only the notifications that
don't fall under the "General Notification Rules" are shown explicitly in the diagram.

 52

15 Artifacts
This section describes the artifacts that should be provided or produced in several stages of the
workflows, and defines templates for each one of them. Table 1 summarizes the artifacts required for
each type of request.

Artifact/Type Bug Feature Task Epic Research
Proposal

Figure 6: Workflow notification scheme. This diagram defines the roles that
should be notified on different transitions.

 53

Requirement Spec. (Bug description) x x x (Goals)

Project Plan x x

Test Plan x x x x

Test Report x x x x (Report)

Validation Plan x x

Validation Report x x x

Table 1: Artifacts required per request type.

15.1 Requirement Specification Document
Requirement elicitation and analysis is a complex activity, involving creative and innovative
thinking, effective communications with stakeholders, and a systematic approach for elaborating and
writing requirements. This document doesn't prescribe a particular process or methodology for
requirement elicitation and analysis, but it does require that a process be defined and a Software
Requirement Specification document be produced by the group and its stakeholders. This document
should be reviewed and accepted for quality while in the Open workflow state, before moving
forward with the next development activities. The Group Leader (or his delegate), should review the
requirements for understandability, testability, and other necessary qualities before accepting them.
The type of process adopted by each group will vary with respect to the nature of the task or project,
the frequency and quality of communications with stakeholders, and the evaluated risks involved in
the effort. For simple features and bugs, a few sentences could be adequate. For other, more complex
requests, a more formal document will need to be written. These factors should be judged carefully
by the Group Leader and DMSD management, and help and guidance should be solicited to the PMD
and Systems Engineering teams when needed.
An example template for a software requirements specification is presented below. This can be
customized to fit the specific needs of a project. Other templates are available from past requirement
elicitation efforts performed by development groups and from the extensive literature that exists
about the subject.

1.Introduction

 1.1 Purpose

 1.2 Document conventions

 1.3 Project scope

 1.4 References

2. Overall description

 2.1 Product perspective

 2.2 User classes and characteristics

 2.3 Operating environment

 2.4 Design and implementation constraints

 2.5 Assumptions and dependencies

3. System features

 3.x System feature X

 3.x.1 Description

 3.x.2 Functional requirements

 54

4. Data requirements

 4.1 Logical data model

 4.2 Data dictionary

 4.3 Reports

 4.4 Data acquisition, integrity, retention, and disposal

5. External interface requirements

 5.1 User interfaces

 5.2 Software interfaces

 5.3 Hardware interfaces

 5.4 Communication interfaces

6. Quality attributes

 6.1 Usability

 6.2 Performance

 6.3 Security

 6.4 Safety

 6.x [others]

7. Other requirements

Appendix A: Glossary

Appendix B: Analysis models

15.2 Project Plan Template
1. Short Description.

2. Reporters and stakeholders.

3. Current Status.

4. Predicted Duration.

5. Project Charter. [Including clear statement of purpose and scope.]

6. Prerequisites.

7. Requirements.

 7.1 Must have.

 7.2 Should have.

 7.3 Could have.

 7.4 Will not have.

8. Implementation Plan.

[Includes schedule of work activities specifying objective milestones.]

[Include resource allocations.]

9. Resources. [Includes resources in addition to the group software personnel (i.e.,

PMD, Architect, Test group.]

9. Risk Management Plan.

10. Impact on Computing Resources.

15.3 Test Plan Template
1. Short Description. [A sentence describing the test, e.g., "Simple archive query",

or "ALMA interferometric pipeline execution".]

2. References. [Reference information, including JIRA ticket #s.]

3. Purpose. [What is to be tested?]

4. Required Setup and Environment. [Required OS, database setups, special hardware,

etc.]

5. Preconditions.

 55

6. Inputs.

7. Test instructions.

8. Postconditions.

9. Alternative cases.

15.4 Test Report Template
1. Environment details. [Anything relevant about the environment used for testing.]

2. Result. [Check one of the following: "Passed", "Not passed", or "Passed with

conditions".]

3. Conditions. [If "Passed with conditions", explain here what are these conditions.]

4. Additional information. [Stacktraces, core dumps, logs, etc.]

15.5 Validation Plan Template
1. Short Description. [A sentence describing the test, e.g., "Simple archive query",

or "ALMA interferometric pipeline execution".]

2. References. [Reference information, including JIRA ticket #s.]

3. Purpose. [What is to be tested?]

4. Required Setup and Environment. [Required OS, database setups, special hardware,

etc.]

5. Preconditions.

6. Inputs.

7. Test instructions.

8. Postconditions.

9. Alternative cases.

15.6 Validation Report Template
1. Environment details. [Anything relevant about the environment used for testing.]

2. Result. [Check one of the following: "Passed", "Not passed", or "Passed with

conditions".]

3. Conditions. [If "Passed with conditions", explain here what are these conditions.]

4. Additional information. [Stacktraces, core dumps, logs, etc.]

5. Documentation evaluation.

15.7 Release Acceptance Plan Template
1. Introduction.

 1.1 Purpose.

 1.2 References.

 1.3 Glossary.

2. Release Overview.

 2.1 Expected features.

3. Preconditions.

[Enumerate conditions that are necessary to start the validation tests, e.g., database

migrated to a new schema, special release installed, etc.]

4. Test period.

[When the validation tests are going to be performed?]

5. Resources.

[What resources are necessary to perform the tests? Cite human, computing and

 56

telescope resources.]

6. Validation Test procedures.

[Reference Validation Test IDs.]

15.8 Release Acceptance Report Template
1. Introduction.

 1.1 Purpose.

 1.2 Acceptance Review Committee

 1.3 References.

 1.4 Glossary.

2. Executive Summary.

 2.1 Decision. [Accepted/Not accepted, accompanied by the reasons behind the

decision.]

3. Release Overview.

 3.1 Delivered features.

4. General problems.

5. Feature problems.

6. Other comments.

 57

16 Colocation of team staff
DMSD recognizes that frequent interaction between members of a software team promotes the
exchange of ideas and minimizes the existence of functional silos. DMS is committed to working
with the business and administration department within NRAO to

• facilitate colocation of staff within the same software development team, to the extent
possible;

• advocate for the establishment of “shared space,” or unreserved meeting areas that facilitate
collaboration, exchange of ideas, group problem solving, and serendipitous encounters
between team members;

• advocate for the establishment of DMS “information radiators,” or public displays that
communicate team status to people walking by.

The effectiveness of the department’s efforts to achieve the above goals will be reviewed annually by
each software team, during a retrospective or other meeting format, and the results communicated to
the software division head.

 58

17 Appendix A: Implementation Notes
DMSD has decided to support the processes described in this document by means of the Atlassian
suite. The following applications will be purchased, installed, and used by each DMSD development
group:

• JIRA: For change and bug tracking. Workflows and fields can be customized, facilitating the
implementation of the processes described in this document.

• Confluence: A document management system, similar to a Wiki, but well integrated with
JIRA and other Atlassian applications. Its Calendar plug-in allows to implement the Master
Schedule (see Section 7). It also provides a medium to manage document templates and their
instantiations.

• Bitbucket Server: Provides a host repository for Git. Allows pull-requests, which some
groups will use as part of their SCM processes.

• Bamboo: A continuous integration server.

 59

18 Appendix B: Group Management Document Template
Besides the artifacts defined in Section 15, which are specific for each request or release, each
DMSD development group will also maintain a Group Management Document, that will be updated
annually and reviewed by DMSD management and other stakeholders. This document aims to
communicate general information about the group and its medium-term (~1 year) plan.
1. Group goals and scope.

2. Group organization.

3. Software development process.

 [Scheduling policy.]

4. Software configuration management.

 [Branching strategy.]

5. Personnel and skillsets.

6. Personnel integration plan.

7. Identification of stakeholders.

8. Brief system description and external interfaces.

9. Planned development activities.

 [Release plan.]

10. Planned maintenance and evolutionary activities.

11. Development resource allocations.

12. Maintenance resource allocations.

13. Risk analysis, mitigation strategies.

The planned development activities in particular should be written for both internal and external
audiences and should include preconditions, or events that must occur for the activity to be successful
(third-party software availability; research project approval, etc.).

	1 Introduction
	1.1 Purpose
	1.2 Change Management
	1.3 Scope
	1.4 Document Structure
	1.5 References
	1.6 Abbreviations and Acronyms

	2 CASA PMD Requirements Project Recommendations Traceability
	3 Software Testing Verification and Validation
	4 Agile Projects
	5 Release Management
	6 Software Configuration Management
	7 Request Types and Scheduling0F
	7.1 Bug
	7.1.1 Description
	7.1.2 Scheduling

	7.2 Feature
	7.2.1 Description
	7.2.2 Scheduling

	7.3 Engineering Task
	7.3.1 Description
	7.3.2 Scheduling

	7.4 Epic2F
	7.4.1 Description
	7.4.2 Scheduling

	7.5 Research request
	7.5.1 Description
	7.5.2 Scheduling

	8 Roles and Responsibilities
	8.1 Reporter
	8.2 Project Scientist
	8.3 Group Lead
	8.4 Component Lead
	8.5 Component Scientist
	8.6 Project Manager
	8.7 Software Architect
	8.8 Developer
	8.9 Test Engineer
	8.10 Validator
	8.11 Acceptance Body
	8.12 Expert

	9 Bug Workflow
	9.1 State: Open
	9.1.1 Purpose
	9.1.2 Responsible Role
	9.1.3 Inputs
	9.1.4 Outputs
	9.1.5 Transitions
	9.1.6 Tollgates

	9.2 State: Unscheduled
	9.2.1 Purpose
	9.2.2 Responsible Role
	9.2.3 Inputs
	9.2.4 Outputs
	9.2.5 Transitions
	9.2.6 Tollgates

	9.3 State: Input Required
	9.3.1 Purpose
	9.3.2 Responsible Role
	9.3.3 Inputs
	9.3.4 Outputs
	9.3.5 Transitions
	9.3.6 Tollgates

	9.4 State: Scheduled
	9.4.1 Purpose
	9.4.2 Responsible Role
	9.4.3 Inputs
	9.4.4 Outputs
	9.4.5 Transitions
	9.4.6 Tollgates

	9.5 State: Ready to Verify
	9.5.1 Purpose
	9.5.2 Responsible Role
	9.5.3 Inputs
	9.5.4 Outputs
	9.5.5 Transitions
	9.5.6 Tollgates

	9.6 State: Under Verification
	9.6.1 Purpose
	9.6.2 Responsible Role
	9.6.3 Inputs
	9.6.4 Outputs
	9.6.5 Transitions
	9.6.6 Tollgates

	9.7 State: Ready to Validate
	9.7.1 Purpose
	9.7.2 Responsible Role
	9.7.3 Inputs
	9.7.4 Outputs
	9.7.5 Transitions
	9.7.6 Tollgates

	9.8 State: Under Validation
	9.8.1 Purpose
	9.8.2 Responsible Role
	9.8.3 Inputs
	9.8.4 Outputs
	9.8.5 Transitions
	9.8.6 Tollgates

	9.9 State: Resolved
	9.9.1 Purpose
	9.9.2 Responsible Role
	9.9.3 Inputs
	9.9.4 Outputs
	9.9.5 Transitions
	9.9.6 Tollgates

	9.10 State: Completed
	9.10.1 Purpose
	9.10.2 Responsible Role
	9.10.3 Inputs
	9.10.4 Outputs
	9.10.5 Transitions

	9.11 State: Closed
	9.11.1 Purpose
	9.11.2 Transitions

	10 Feature Workflow
	10.1 State: Open
	10.1.1 Purpose
	10.1.2 Responsible Role
	10.1.3 Inputs
	10.1.4 Outputs
	10.1.5 Transitions
	10.1.6 Tollgates

	10.2 State: Unscheduled
	10.2.1 Purpose
	10.2.2 Responsible Role
	10.2.3 Inputs
	10.2.4 Outputs
	10.2.5 Transitions
	10.2.6 Tollgates

	10.3 State: Input Required
	10.3.1 Purpose
	10.3.2 Responsible Role
	10.3.3 Inputs
	10.3.4 Outputs
	10.3.5 Transitions
	10.3.6 Tollgates

	10.4 State: Scheduled
	10.4.1 Purpose
	10.4.2 Responsible Role
	10.4.3 Inputs
	10.4.4 Outputs
	10.4.5 Transitions
	10.4.6 Tollgates

	10.5 State: Ready to Verify
	10.5.1 Purpose
	10.5.2 Responsible Role
	10.5.3 Inputs
	10.5.4 Outputs
	10.5.5 Transitions
	10.5.6 Tollgates

	10.6 State: Under Verification
	10.6.1 Purpose
	10.6.2 Responsible Role
	10.6.3 Inputs
	10.6.4 Outputs
	10.6.5 Transitions
	10.6.6 Tollgates

	10.7 State: Ready to Validate
	10.7.1 Purpose
	10.7.2 Responsible Role
	10.7.3 Inputs
	10.7.4 Outputs
	10.7.5 Transitions
	10.7.6 Tollgates

	10.8 State: Under Validation
	10.8.1 Purpose
	10.8.2 Responsible Role
	10.8.3 Inputs
	10.8.4 Outputs
	10.8.5 Transitions
	10.8.6 Tollgates

	10.9 State: Resolved
	10.9.1 Purpose
	10.9.2 Responsible Role
	10.9.3 Inputs
	10.9.4 Outputs
	10.9.5 Transitions
	10.9.6 Tollgates

	10.10 State: Completed
	10.10.1 Purpose
	10.10.2 Responsible Role
	10.10.3 Inputs
	10.10.4 Outputs
	10.10.5 Transitions
	10.10.6 Tollgates

	10.11 State: Closed
	10.11.1 Purpose
	10.11.2 Transitions

	11 Engineering Task Workflow
	11.1 State: Open
	11.1.1 Purpose
	11.1.2 Responsible Role
	11.1.3 Inputs
	11.1.4 Outputs
	11.1.5 Transitions
	11.1.6 Tollgates

	11.2 State: Unscheduled
	11.2.1 Purpose
	11.2.2 Responsible Role
	11.2.3 Inputs
	11.2.4 Outputs
	11.2.5 Transitions
	11.2.6 Tollgates

	11.3 State: Input Required
	11.3.1 Purpose
	11.3.2 Responsible Role
	11.3.3 Inputs
	11.3.4 Outputs
	11.3.5 Transitions
	11.3.6 Tollgates

	11.4 State: Scheduled
	11.4.1 Purpose
	11.4.2 Responsible Role
	11.4.3 Inputs
	11.4.4 Outputs
	11.4.5 Transitions
	11.4.6 Tollgates

	11.5 State: Ready to Verify
	11.5.1 Purpose
	11.5.2 Responsible Role
	11.5.3 Inputs
	11.5.4 Outputs
	11.5.5 Transitions
	11.5.6 Tollgates

	11.6 State: Under Verification
	11.6.1 Purpose
	11.6.2 Responsible Role
	11.6.3 Inputs
	11.6.4 Outputs
	11.6.5 Transitions
	11.6.6 Tollgates

	11.7 State: Resolved
	11.7.1 Purpose
	11.7.2 Responsible Role
	11.7.3 Inputs
	11.7.4 Outputs
	11.7.5 Transitions
	11.7.6 Tollgates

	11.8 State: Completed
	11.8.1 Purpose
	11.8.2 Responsible Role
	11.8.3 Inputs
	11.8.4 Outputs
	11.8.5 Transitions
	11.8.6 Tollgates

	11.9 State: Closed
	11.9.1 Purpose
	11.9.2 Transitions

	12 Epic Workflow
	12.1 State: Open
	12.1.1 Purpose
	12.1.2 Responsible Role
	12.1.3 Inputs
	12.1.4 Outputs
	12.1.5 Transitions
	12.1.6 Tollgates

	12.2 State: Unscheduled
	12.2.1 Purpose
	12.2.2 Responsible Role
	12.2.3 Inputs
	12.2.4 Outputs
	12.2.5 Transitions
	12.2.6 Tollgates

	12.3 State: Input Required
	12.3.1 Purpose
	12.3.2 Responsible Role
	12.3.3 Inputs
	12.3.4 Outputs
	12.3.5 Transitions
	12.3.6 Tollgates

	12.4 State: Scheduled
	12.4.1 Purpose
	12.4.2 Responsible Role
	12.4.3 Inputs
	12.4.4 Outputs
	12.4.5 Transitions
	12.4.6 Tollgates

	12.5 State: Ready to Verify
	12.5.1 Purpose
	12.5.2 Responsible Role
	12.5.3 Inputs
	12.5.4 Outputs
	12.5.5 Transitions
	12.5.6 Tollgates

	12.6 State: Under Verification
	12.6.1 Purpose
	12.6.2 Responsible Role
	12.6.3 Inputs
	12.6.4 Outputs
	12.6.5 Transitions
	12.6.6 Tollgates

	12.7 State: Ready to Validate
	12.7.1 Purpose
	12.7.2 Responsible Role
	12.7.3 Inputs
	12.7.4 Outputs
	12.7.5 Transitions
	12.7.6 Tollgates

	12.8 State: Under Validation
	12.8.1 Purpose
	12.8.2 Responsible Role
	12.8.3 Inputs
	12.8.4 Outputs
	12.8.5 Transitions
	12.8.6 Tollgates

	12.9 State: Resolved
	12.9.1 Purpose
	12.9.2 Responsible Role
	12.9.3 Inputs
	12.9.4 Outputs
	12.9.5 Transitions
	12.9.6 Tollgates

	12.10 State: Completed
	12.10.1 Purpose
	12.10.2 Responsible Role
	12.10.3 Inputs
	12.10.4 Outputs
	12.10.5 Transitions
	12.10.6 Tollgates

	12.11 State: Closed
	12.11.1 Purpose
	12.11.2 Transitions

	13 Research Project Workflow
	13.1 State: Open
	13.1.1 Purpose
	13.1.2 Responsible Role
	13.1.3 Inputs
	13.1.4 Outputs
	13.1.5 Transitions
	13.1.6 Tollgates

	13.2 State: Unscheduled
	13.2.1 Purpose
	13.2.2 Responsible Role
	13.2.3 Inputs
	13.2.4 Outputs
	13.2.5 Transitions
	13.2.6 Tollgates

	13.3 State: Input Required
	13.3.1 Purpose
	13.3.2 Responsible Role
	13.3.3 Inputs
	13.3.4 Outputs
	13.3.5 Transitions
	13.3.6 Tollgates

	13.4 State: Scheduled
	13.4.1 Purpose
	13.4.2 Responsible Role
	13.4.3 Inputs
	13.4.4 Outputs
	13.4.5 Transitions
	13.4.6 Tollgates

	13.5 State: Resolved
	13.5.1 Purpose
	13.5.2 Responsible Role
	13.5.3 Inputs
	13.5.4 Outputs
	13.5.5 Transitions
	13.5.6 Tollgates

	13.6 State: Closed
	13.6.1 Purpose
	13.6.2 Transitions

	14 Notifications
	15 Artifacts
	15.1 Requirement Specification Document
	15.2 Project Plan Template
	15.3 Test Plan Template
	15.4 Test Report Template
	15.5 Validation Plan Template
	15.6 Validation Report Template
	15.7 Release Acceptance Plan Template
	15.8 Release Acceptance Report Template

	16 Colocation of team staff
	17 Appendix A: Implementation Notes
	18 Appendix B: Group Management Document Template

